Objectives: Interleukin (IL) 22 mRNA in systemic sclerosis (SSc) skin and Th22 cells in SSc peripheral blood are increased, but the role of IL-22 in fibrosis development remains poorly understood.

Methods: Biopsies were obtained from the involved skin of 15 SSc, 4 morphea and 8 healthy donors (HD). The presence of IL-22+ cells in the skin was determined by immunostaining. The in vitro response of HD and SSc fibroblasts to IL-22, IL-22 in conjunction with tumour necrosis factor (TNF) or keratinocyte conditioned medium was assessed by ELISA, radioimmunoassay (RIA), real-time PCR and western blot. The in vivo response in mice was assessed by histomorphometry.

Results: IL-22+ cells were over-represented in the dermis and epidermis of morphea and in the epidermis of SSc compared with HD. The majority of dermal IL-22+ cells were T cells. Dermal fibroblasts expressed both IL-22 receptor subunits IL-10RB and IL-22RA, expression of which was enhanced by TNF and reduced by transforming growth factor (TGF)-β. IL-22 induced rapid phosphorylation of p38 and ERK1/2 in fibroblasts, but failed to induce the synthesis of chemokines and extracellular matrix components. However, IL-22 enhanced the production of monocyte chemotactic protein 1, IL-8 and matrix metalloproteinase 1 induced by TNF. Fibroblast responses were maximal in the presence of conditioned medium from keratinocytes activated by IL-22 in conjunction with TNF. Dermal thickness was maximal in mice injected simultaneously with IL-22 and TNF.

Conclusions: IL-22 capacitates fibroblast responses to TNF and promotes a proinflammatory fibroblast phenotype by favouring TNF-induced keratinocyte activation. These results define a novel role for keratinocyte-fibroblast interactions in the context of skin fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1136/annrheumdis-2015-207477DOI Listing

Publication Analysis

Top Keywords

fibroblast responses
12
il-22+ cells
12
il-22
10
il-22 capacitates
8
responses tnf
8
il-22 conjunction
8
conditioned medium
8
tnf
6
ssc
5
cells
5

Similar Publications

Exploring the ncRNA landscape in exosomes: Insights into wound healing mechanisms and therapeutic applications.

Int J Biol Macromol

December 2024

Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India. Electronic address:

Exosomal non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, have emerged as crucial modulators in cellular signaling, influencing wound healing processes. Stem cell-derived exosomes, which serve as vehicles for these ncRNAs, show remarkable therapeutic potential due to their ability to modulate wound healing stages, from initial inflammation to collagen formation. These ncRNAs act as molecular signals, regulating gene expression and protein synthesis necessary for cellular responses in healing.

View Article and Find Full Text PDF

Splenic fibroblasts control marginal zone B cell movement and function via two distinct Notch2-dependent regulatory programs.

Immunity

December 2024

Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address:

Innate-like splenic marginal zone (MZ) B (MZB) cells play unique roles in immunity due to their rapid responsiveness to blood-borne microbes. How MZB cells integrate cell-extrinsic and -intrinsic processes to achieve accelerated responsiveness is unclear. We found that Delta-like1 (Dll1) Notch ligands in splenic fibroblasts regulated MZB cell pool size, migration, and function.

View Article and Find Full Text PDF

Fibroblast growth factor 21 (FGF21) modulates the inflammatory response in a range of pathological conditions. However, whether FGF21 modulates asthma remains unexplored. This study sought to investigate its function in asthma using an ovalbumin (OVA)-induced mouse model.

View Article and Find Full Text PDF

Xeroderma pigmentosum group C (XPC) is a versatile protein crucial for sensing DNA damage in the global genome nucleotide excision repair (GG-NER) pathway. This pathway is vital for mammalian cells, acting as their essential approach for repairing DNA lesions stemming from interactions with environmental factors, such as exposure to ultraviolet (UV) radiation from the sun. Loss-of-function mutations in the XPC gene confer a photosensitive phenotype in XP-C patients, resulting in the accumulation of unrepaired UV-induced DNA damage.

View Article and Find Full Text PDF

Sodium-glucose co-transport protein 2 (SGLT2) inhibitors, a novel category of oral hypoglycemic agents, offer a promising outlook for individuals experiencing heart failure with reduced ejection fraction. Evidence is emerging that highlights their potential in alleviating myocardial fibrosis and oxidative stress. However, the precise mechanisms through which SGLT2 inhibitors influence myocardial fibrosis induced by angiotensin II (Ang II) or transforming growth factor-β1 (TGF-β1) are not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!