Gene stacking in plant cell using recombinases for gene integration and nucleases for marker gene deletion.

BMC Biotechnol

Department of Crop, Soil & Environmental Science, 115 Plant Science Building, University of Arkansas, Fayetteville, AR, 72701, USA.

Published: October 2015

Background: Practical approaches for multigene transformation and gene stacking are extremely important for engineering complex traits and adding new traits in transgenic crops. Trait deployment by gene stacking would greatly simplify downstream plant breeding and trait introgression into cultivars. Gene stacking into pre-determined genomic sites depends on mechanisms of targeted DNA integration and recycling of selectable marker genes. Targeted integrations into chromosomal breaks, created by nucleases, require large transformation efforts. Recombinases such as Cre-lox, on the other hand, efficiently drive site-specific integrations in plants. However, the reversibility of Cre-lox recombination, due to the incorporation of two cis-positioned lox sites, presents a major bottleneck in its application in gene stacking. Here, we describe a strategy of resolving this bottleneck through excision of one of the cis-positioned lox, embedded in the marker gene, by nuclease activity.

Methods: All transgenic lines were developed by particle bombardment of rice callus with plasmid constructs. Standard molecular approach was used for building the constructs. Transgene loci were analyzed by PCR, Southern hybridization, and DNA sequencing.

Results: We developed a highly efficient gene stacking method by utilizing powerful recombinases such as Cre-lox and FLP-FRT, for site-specific gene integrations, and nucleases for marker gene excisions. We generated Cre-mediated site-specific integration locus in rice and showed excision of marker gene by I-SceI at ~20 % efficiency, seamlessly connecting genes in the locus. Next, we showed ZFN could be used for marker excision, and the locus can be targeted again by recombinases. Hence, we extended the power of recombinases to gene stacking application in plants. Finally, we show that heat-inducible I-SceI is also suitable for marker excision, and therefore could serve as an important tool in streamlining this gene stacking platform.

Conclusions: A practical approach for gene stacking in plant cell was developed that allows targeted gene insertions through rounds of transformation, a method needed for introducing new traits into transgenic lines for their rapid deployment in the field. By using Cre-lox, a powerful site-specific recombination system, this method greatly improves gene stacking efficiency, and through the application of nucleases develops marker-free, seamless stack of genes at pre-determined chromosomal sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600305PMC
http://dx.doi.org/10.1186/s12896-015-0212-2DOI Listing

Publication Analysis

Top Keywords

gene stacking
40
gene
17
marker gene
16
stacking
9
stacking plant
8
plant cell
8
recombinases gene
8
nucleases marker
8
traits transgenic
8
recombinases cre-lox
8

Similar Publications

To explore the molecular mechanism behind maize grain quality and use of different gene stacking to improve the nutritional quality of grain, marker-assisted selection (MAS) was used to select three recessive mutant lines containing , along with the double-recessive mutant lines containing , , and . The resulting seeds were taken for transcriptome sequencing analysis 18 days after pollination (DAP). Results: Compared with the recurrent parent genes, in the lysine synthesis pathway, the gene pyramiding lines (, , and ) revealed that the gene encoding aspartate kinase (AK) was up-regulated and promoted lysine synthesis.

View Article and Find Full Text PDF

Objective: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition influenced by various genetic and environmental factors. Currently, there is no definitive clinical test, such as a blood analysis or brain scan, for early diagnosis. The objective of this study is to develop a computational model that predicts ASD driver genes in the early stages using genomic data, aiming to enhance early diagnosis and intervention.

View Article and Find Full Text PDF

2-Ethylhexyl diphenyl phosphate (EHDPP) is a replacement flame-retardant commonly found in several environmental matrices and human biospecimens. Although some adverse effects of EHDPP have been identified, the endocrine-disrupting effects of EHDPP and its key metabolites on the human estrogen receptor (ER) are largely unknown. Herein, we report for the first time that EHDPP, at concentrations found in the environment and humans, significantly promoted estrogenic activity and synergized with 17β-estradiol-induced ER transactivation.

View Article and Find Full Text PDF

Stacking fermentation is critical in sauce-flavor production, but winter production often sees abnormal fermentations, like Waistline and Sub-Temp fermentation, affecting yield and quality. This study used three machine learning models (Logistic Regression, KNN, and Random Forest) combined with multi-omics (metagenomics and flavoromics) to develop a classification model for abnormal fermentation. SHAP analysis identified 13 Sub-Temp Fermentation and 9 Waistline microbial biomarkers, along with 9 Sub-Temp Fermentation and 12 Waistline flavor biomarkers.

View Article and Find Full Text PDF

Antarctic Krill Protein Amyloid Fibrils as a Novel Iron Carrier for the Improvement of Iron Deficiency.

J Agric Food Chem

January 2025

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

Iron fortification with food supplements remains the primary dietary strategy for improving iron deficiency anemia (IDA). This study used Antarctic krill protein for fibrillar design to form an Antarctic krill protein amyloid fibril (AKAF). The results indicated that peptides generated by proteolysis were a prerequisite for fibril assembly, forming elongated fibril structures and cross-linking upon heating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!