An efficient synthesis of 2-substituted indene-1,3(2H)-diones from stable and readily available 1-(2-halophenyl)-1,3-diones by employing phenyl formate as a CO source has been developed. The reaction occurred via palladium-catalyzed intramolecular carbonylative annulation using K3PO4 as a base and DMSO as a solvent at 95 °C. In this protocol, the reaction showed a broad substrate scope with good to excellent yields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.5b01758DOI Listing

Publication Analysis

Top Keywords

carbonylative annulation
8
formate source
8
synthesis 2-substituted
8
palladium-catalyzed carbonylative
4
annulation reactions
4
reactions aryl
4
aryl formate
4
source synthesis
4
2-substituted indene-132h-dione
4
indene-132h-dione derivatives
4

Similar Publications

Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp)-H bond functionalization.

View Article and Find Full Text PDF

Visible-Light-Induced [4 + 3]-Annulation of Carbonyl Ylides with Alkenyl Pyrazolinone for Constructing [4.2.1]-Oxo-Bridged Oxocine Skeleton.

Org Lett

January 2025

State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.

Herein, we present a visible-light-induced protocol for the synthesis of highly functionalized oxo-bridged oxocine skeletons. This method generates carbenes via visible-light-induced ortho-acyl diazo compounds, which are rapidly intercepted by the oxygen atom of an intermolecular acyl group to form a cyclic 1,3-dipole. The in situ generated highly reactive 1,3-dipole undergoes a facile formal [4 + 3] cycloaddition with alkenyl pyrazolinone, yielding [4.

View Article and Find Full Text PDF

The introduction of 4,5-dihydroazuleno[2,1,8-ija]azulene as a central core between two 1,4-dithiafulvene (DTF) units provides a novel class of extended tetrathiafulvalene (TTF) electron donors. Herein we present the synthesis of such compounds with the azulenoazulene further expanded by annulation to benzene, naphthalene, or thiophene rings. Moreover, unsymmetrical donor-acceptor chromophores with one DTF and one carbonyl at the central core are presented.

View Article and Find Full Text PDF

Oxidative cleavage of olefins is a useful reaction in organic synthesis. The most well-known catalytic system is the osmium based Lemieux-Johnson catalyst, which generally requires high catalyst loading and tends to suffer from rapid overoxidation to produce the acid predominantly. Hence, the development of a mild, general, and selective method toward the oxidative cleavage of alkenes to carbonyl compounds is highly desired.

View Article and Find Full Text PDF

The cascade carbon-carbon and carbon-nitrogen bond formation between generated carbonyl ylides and azaoxyallyl cations, facilitated by Rh-catalysis and a base, has been achieved to furnish oxa-benzo[]azepin-3-ones. Substrate scope, functional group diversity, scale-up and post-synthetic utilities are the important practical features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!