Voltage-gated Na+ channels (VGSCs) mediate action potential firing and regulate adhesion and migration in excitable cells. VGSCs are also expressed in cancer cells. In metastatic breast cancer (BCa) cells, the Nav1.5 α subunit potentiates migration and invasion. In addition, the VGSC-inhibiting antiepileptic drug phenytoin inhibits tumor growth and metastasis. However, the functional activity of Nav1.5 and its specific contribution to tumor progression in vivo has not been delineated. Here, we found that Nav1.5 is up-regulated at the protein level in BCa compared with matched normal breast tissue. Na+ current, reversibly blocked by tetrodotoxin, was retained in cancer cells in tumor tissue slices, thus directly confirming functional VGSC activity in vivo. Stable down-regulation of Nav1.5 expression significantly reduced tumor growth, local invasion into surrounding tissue, and metastasis to liver, lungs and spleen in an orthotopic BCa model. Nav1.5 down-regulation had no effect on cell proliferation or angiogenesis within the in tumors, but increased apoptosis. In vitro, Nav1.5 down-regulation altered cell morphology and reduced CD44 expression, suggesting that VGSC activity may regulate cellular invasion via the CD44-src-cortactin signaling axis. We conclude that Nav1.5 is functionally active in cancer cells in breast tumors, enhancing growth and metastatic dissemination. These findings support the notion that compounds targeting Nav1.5 may be useful for reducing metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741739PMC
http://dx.doi.org/10.18632/oncotarget.5441DOI Listing

Publication Analysis

Top Keywords

tumor growth
12
cancer cells
12
nav15
9
growth metastatic
8
metastatic dissemination
8
vgsc activity
8
nav15 down-regulation
8
tumor
5
cells
5
nav15 regulates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!