The increase in aridity predicted with climate change will have a negative impact on the multiple functions and services (multifunctionality) provided by dryland ecosystems worldwide. In these ecosystems, soil communities dominated by mosses, lichens and cyanobacteria (biocrusts) play a key role in supporting multifunctionality. However, whether biocrusts can buffer the negative impacts of aridity on important biogeochemical processes controlling carbon (C), nitrogen (N), and phosphorus (P) pools and fluxes remains largely unknown. Here, we conducted an empirical study, using samples from three continents (North America, Europe and Australia), to evaluate how the increase in aridity predicted by climate change will alter the capacity of biocrust-forming mosses to modulate multiple ecosystem processes related to C, N and P cycles. Compared with soil surfaces lacking biocrusts, biocrust-forming mosses enhanced multiple functions related to C, N and P cycling and storage in semiarid and arid, but not in humid and dry-subhumid, environments. Most importantly, we found that the relative positive effects of biocrust-forming mosses on multifunctionality compared with bare soil increased with increasing aridity. These results were mediated by plant cover and the positive effects exerted by biocrust-forming mosses on the abundance of soil bacteria and fungi. Our findings provide strong evidence that the maintenance of biocrusts is crucial to buffer negative effects of climate change on multifunctionality in global drylands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.13688 | DOI Listing |
Sci Total Environ
November 2022
Agronomy Department, University of Almería, Spain; Research Centre for Scientific Collections from the University of Almeria (CECOUAL), Spain.
Dryland soil degradation is increasing due to global change and traditional restoration methods are not successful due to water scarcity. Thus, an alternative technology based on inoculating biocrust-forming cyanobacteria on degraded soils has emerged. Biocrusts are communities of mosses, lichens, cyanobacteria or fungi that colonize soil surface forming a stable and fertile layer.
View Article and Find Full Text PDFFront Plant Sci
May 2022
Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.
The species diversity of biocrusts is an important community characteristic in determining their multiple ecosystem functions. Hence, understanding the diversity patterns of biocrusts and their environmental drivers is of fundamental importance. However, explain variables often correlated with each other; thus, the confounding effects among them may arise and result in spurious causal relationships and biased ecological inferences.
View Article and Find Full Text PDFJ Exp Bot
July 2022
Instituto Multidisciplinar para el Estudio del Medio 'Ramón Margalef', Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Spain.
Interest in understanding the role of biocrusts as ecosystem engineers in drylands has substantially increased during the past two decades. Mosses are a major component of biocrusts and dominate their late successional stages. In general, their impacts on most ecosystem functions are greater than those of early-stage biocrust constituents.
View Article and Find Full Text PDFBiocrusts (topsoil communities formed by mosses, lichens, bacteria, fungi, algae, and cyanobacteria) are a key biotic component of dryland ecosystems. Whilst climate patterns control the distribution of biocrusts in drylands worldwide, terrain and soil attributes can influence biocrust distribution at landscape scale. Multi-source unmanned aerial vehicle (UAV) imagery was used to map and study biocrust ecology in a typical dryland ecosystem in central Spain.
View Article and Find Full Text PDFNew Phytol
April 2021
Instituto Multidisciplinar para el Estudio del Medio 'Ramon Margalef', Edificio Nuevos Institutos, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Spain.
Biocrusts are key drivers of ecosystem functioning in drylands, yet our understanding of how climate change will affect the chemistry of biocrust-forming species and their impacts on carbon (C) and nitrogen (N) cycling is still very limited. Using a manipulative experiment conducted with common biocrust-forming lichens with distinct morphology and chemistry (Buellia zoharyi, Diploschistes diacapsis, Psora decipiens and Squamarina lentigera), we evaluated changes in lichen total and isotopic C and N and several soil C and N variables after 50 months of simulated warming and rainfall reduction. Climate change treatments reduced δ C and the C : N ratio in B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!