AI Article Synopsis

  • The study explores the limitations of traditional pulsed arterial spin labeling (PASL) methods that affect temporal resolution and signal-to-noise ratio (SNR).
  • A new wedge-shaped adiabatic inversion pulse is introduced, which modifies the labeling process to achieve better control over bolus thicknesses while preserving desired properties.
  • The results demonstrate that this new wedge-shaped pulse significantly improves the consistency of bolus timings across varying flow velocities, enhancing the effectiveness of PASL techniques.

Article Abstract

Purpose: In pulsed arterial spin labeling (PASL) methods, arterial blood is labeled by inverting a slab with uniform thickness, resulting in different temporal widths of boluses in vessels with different flow velocities. This limits the temporal resolution and signal-to-noise ratio (SNR) efficiency gains in PASL-based methods intended for high temporal resolution and SNR efficiency, such as turbo-ASL and turbo-QUASAR.

Theory And Methods: A novel wedge-shaped (WS) adiabatic inversion pulse is developed by adding in-plane gradient pulses to a slice-selective (SS) adiabatic inversion pulse to linearly modulate the inversion thicknesses at different locations while maintaining the adiabatic properties of the original pulse. A hyperbolic secant (HS)-based WS inversion pulse was implemented. Its performance was tested in simulations and in phantom and human experiments and compared with an SS HS inversion pulse.

Results: Compared with the SS inversion pulse, the WS inversion pulse was capable of inducing different inversion thicknesses at different locations. It could be adjusted to generate a uniform temporal width of boluses in arteries at locations with different flow velocities.

Conclusion: The WS inversion pulse can be used to control the temporal widths of labeled boluses in PASL experiments. This should benefit PASL experiments by maximizing labeling duty cycle and improving temporal resolution and SNR efficiency. Magn Reson Med 76:838-847, 2016. © 2015 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4826647PMC
http://dx.doi.org/10.1002/mrm.25989DOI Listing

Publication Analysis

Top Keywords

inversion pulse
28
adiabatic inversion
12
temporal resolution
12
snr efficiency
12
inversion
10
slice-selective adiabatic
8
pulse
8
temporal width
8
pulsed arterial
8
arterial spin
8

Similar Publications

Background: Central arterial stiffening is associated with brain white matter (WM) damage and gray matter (GM) volume loss in older adults, but little is known about this association from an adult lifespan perspective.

Purpose: To investigate the associations of central arterial stiffness with WM microstructural organization, WM lesion load, cortical thickness, and GM volume in healthy adults across the lifespan.

Study Type: This is a cross-sectional study.

View Article and Find Full Text PDF

Objective: To explore the genetic characteristics of a Chinese pedigree with rare mosaic 11q partial duplication and its pathogenetic mechanisms.

Methods: A pedigree which underwent prenatal diagnosis at Wenzhou Central Hospital between September 25, 2015 and November 30, 2023 was selected for the study. Clinical data were collected from the pedigree.

View Article and Find Full Text PDF

The spiral generator, based on the principle of the electric field vector inversion, is capable of delivering repetitive high-voltage nanosecond pulses in the commercial portable pulsed x-ray source and gas switch trigger source. However, the spiral generator suffers from extremely low output efficiency, which significantly affects the compactness and accelerates the insulation film breakdown at electrode foil edges since the high charging voltage is required. A novel output efficiency improvement method for the spiral generator was proposed, implementing the permalloy film inside the passive layer to optimize internal voltage wave propagation processes during the pulser erection.

View Article and Find Full Text PDF

Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations.

View Article and Find Full Text PDF

Purpose: Type 1 diabetes (T1D) is an autoimmune disease that leads to the loss of insulin-producing pancreatic beta cells. Beta cell replacement devices or bioartificial pancreas (BAP) have shown promise in curing T1D and providing long-term insulin independence without the need for immunosuppressants. Hypoxia in BAP devices damages cells and imposes limitations on device dimensions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!