A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Positional symmetry of porion and external auditory meatus in facial asymmetry. | LitMetric

Positional symmetry of porion and external auditory meatus in facial asymmetry.

Maxillofac Plast Reconstr Surg

Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu 120-752 Seoul, Korea.

Published: December 2015

Background: The porion (Po) is used to construct the Frankfort horizontal (FH) plane for cephalometrics, and the external auditory meatus (EAM) is to transfer and mount the dental model with facebow. The classical assumption is that EAM represents Po by the parallel positioning. However, we are sometimes questioning about the possible positional disparity between Po and EAM, when the occlusal cant or facial midline is different from our clinical understandings. The purpose of this study was to evaluate the positional parallelism of Po and EAM in facial asymmetries, and also to investigate their relationship with the maxillary occlusal cant.

Methods: The 67 subjects were classified into three groups. Group I had normal subjects with facial symmetry (1.05 ± 0.52 mm of average chin deviation) with minimal occlusal cant (<1.5 mm). Asymmetry group II-A had no maxillary occlusal cant (average 0.60 ± 0.36), while asymmetry group II-B had occlusal cant (average 3.72 ± 1.47). The distances of bilateral Po, EAM, and mesiobuccal cusp tips of the maxillary first molars (Mx) from the horizontal orbital plane (Orb) and the coronal plane were measured on the three-dimensional computed tomographic images. Their right and left side distance discrepancies were calculated and statistically compared.

Results: EAM was located 10.3 mm below and 2.3 mm anterior to Po in group I.  The vertical distances from Po to EAM of both sides were significantly different in group II-B ( = 0.001), while other groups were not. Interside discrepancy of the vertical distances from EAM to Mx in group II-B also showed the significant differences, as compared with those from Po to Mx and from Orb to Mx.

Conclusions: The subjects with facial asymmetry and prominent maxillary occlusal cant tend to have the symmetric position of Po but asymmetric EAM. Some caution or other measures will be helpful for them to be used during the clinical procedures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591197PMC
http://dx.doi.org/10.1186/s40902-015-0033-1DOI Listing

Publication Analysis

Top Keywords

external auditory
8
auditory meatus
8
occlusal cant
8
positional symmetry
4
symmetry porion
4
porion external
4
facial
4
meatus facial
4
facial asymmetry
4
asymmetry background
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!