Direct Evidence for Microdomain-Specific Localization and Remodeling of Functional L-Type Calcium Channels in Rat and Human Atrial Myocytes.

Circulation

From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.).

Published: December 2015

Background: Distinct subpopulations of L-type calcium channels (LTCCs) with different functional properties exist in cardiomyocytes. Disruption of cellular structure may affect LTCC in a microdomain-specific manner and contribute to the pathophysiology of cardiac diseases, especially in cells lacking organized transverse tubules (T-tubules) such as atrial myocytes (AMs).

Methods And Results: Isolated rat and human AMs were characterized by scanning ion conductance, confocal, and electron microscopy. Half of AMs possessed T-tubules and structured topography, proportional to cell width. A bigger proportion of myocytes in the left atrium had organized T-tubules and topography than in the right atrium. Super-resolution scanning patch clamp showed that LTCCs distribute equally in T-tubules and crest areas of the sarcolemma, whereas, in ventricular myocytes, LTCCs primarily cluster in T-tubules. Rat, but not human, T-tubule LTCCs had open probability similar to crest LTCCs, but exhibited ≈ 40% greater current. Optical mapping of Ca(2+) transients revealed that rat AMs presented ≈ 3-fold as many spontaneous Ca(2+) release events as ventricular myocytes. Occurrence of crest LTCCs and spontaneous Ca(2+) transients were eliminated by either a caveolae-targeted LTCC antagonist or disrupting caveolae with methyl-β-cyclodextrin, with an associated ≈ 30% whole-cell ICa,L reduction. Heart failure (16 weeks post-myocardial infarction) in rats resulted in a T-tubule degradation (by ≈ 40%) and significant elevation of spontaneous Ca(2+) release events. Although heart failure did not affect LTCC occurrence, it led to ≈ 25% decrease in T-tubule LTCC amplitude.

Conclusions: We provide the first direct evidence for the existence of 2 distinct subpopulations of functional LTCCs in rat and human AMs, with their biophysical properties modulated in heart failure in a microdomain-specific manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689179PMC
http://dx.doi.org/10.1161/CIRCULATIONAHA.115.018131DOI Listing

Publication Analysis

Top Keywords

rat human
16
spontaneous ca2+
12
heart failure
12
direct evidence
8
l-type calcium
8
calcium channels
8
atrial myocytes
8
distinct subpopulations
8
affect ltcc
8
microdomain-specific manner
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!