Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Resistance to the antibiotic thiostrepton, in producing Streptomycetes, is conferred by the S-adenosyl-L-methionine (SAM)-dependent SPOUT methyltransferase Tsr. For this and related enzymes, the roles of active site amino acids have been inadequately described. Herein, we have probed SAM interactions in the Tsr active site by investigating the catalytic activity and the thermodynamics of SAM binding by site-directed Tsr mutants. Two arginine residues were demonstrated to be critical for binding, one of which appears to participate in the catalytic reaction. Additionally, evidence consistent with the involvement of an asparagine in the structural organization of the SAM binding site is presented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661090 | PMC |
http://dx.doi.org/10.1016/j.febslet.2015.09.028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!