Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oxidative stress is postulated as one of the mechanisms underlying the estrogen's carcinogenic effect in thyroid cancer. But the fundamental mechanisms behind this carcinogenic effect remain elusive. Physiologically attainable concentrations of estrogen or estrogen metabolites have been made known to cause reactive oxygen species (ROS). It is envisioned that estrogen-induced ROS mediated signaling is a key congruent mechanism that drives the modulation of uncoupled proteins in papillary thyroid carcinoma cells. The present study investigates that estrogens may increase mitochondrial ROS production by repressing uncoupling proteins, which offers a new perspective on the understanding of why thyroid cancer occurs three times more often in females than in males, and the occurrence decreases after menopause.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/iub.1440 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!