Clinical trials represent a critical avenue for new treatment development, where early phases (I, I/II) are designed to test safety and effectiveness of new therapeutics or diagnostic indicators. A number of recent advances have spurred renewed optimism toward initiating clinical trials and developing refined therapies for the muscular dystrophies (MD's) and other myogenic disorders. MD's encompass a heterogeneous group of degenerative disorders often characterized by progressive muscle weakness and fragility. Many of these diseases result from mutations in genes encoding proteins of the dystrophin-glycoprotein complex (DGC). The most common and severe form among children is Duchenne muscular dystrophy, caused by mutations in the dystrophin gene, with an average life expectancy around 25 years of age. Another group of MD's referred to as the limb-girdle muscular dystrophies (LGMDs) can affect boys or girls, with different types caused by mutations in different genes. Mutation of the α-sarcoglycan gene, also a DGC component, causes LGMD2D and represents the most common form of LGMD. Early preclinical and clinical trial findings support the feasibility of gene therapy via recombinant adeno-associated viral vectors as a viable treatment approach for many MDs. In this mini-review, we present an overview of recent progress in clinical gene therapy trials of the MD's and touch upon promising preclinical advances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4802376PMC
http://dx.doi.org/10.1093/hmg/ddv420DOI Listing

Publication Analysis

Top Keywords

gene therapy
12
clinical trials
12
muscular dystrophies
12
mutations genes
8
caused mutations
8
gene
5
clinical
5
progress prospects
4
prospects gene
4
therapy clinical
4

Similar Publications

Diabetes mellitus (DM) is a major metabolic disease endangering global health, with diabetic nephropathy (DN) as a primary complication lacking curative therapy. Sporoderm-broken spores of (GLP), an herbal medicine, has been used for the treatment of metabolic disorders. In this study, DN was induced in Sprague-Dawley rats using streptozotocin (STZ) and a high-fat diet (HFD), and the protective mechanisms of GLP were investigated through transcriptomic, metabolomic, and network pharmacology (NP) analyses.

View Article and Find Full Text PDF

In chronic lymphocytic leukemia, the reliability of next-generation sequencing (NGS) to detect variants ≤10% allelic frequency (low-VAF) is debated. We tested the ability to detect 23 such variants in 41 different laboratories using their NGS method of choice. The sensitivity was 85.

View Article and Find Full Text PDF

The "best practices for farming" successfully contributed to decrease the antibiotic resistance gene abundances within dairy farms.

Front Vet Sci

January 2025

Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy.

Introduction: Farms are significant hotspots for the dissemination of antibiotic-resistant bacteria and genes (ARGs) into the environment and directly to humans. The prevalence of ARGs on farms underscores the need for effective strategies to reduce their spread. This study aimed to evaluate the impact of a guideline on "best practices for farming" aimed at reducing the dissemination of antibiotic resistance.

View Article and Find Full Text PDF

Background: In approximately 80% of colorectal cancer cases, mutations in the adenomatous polyposis coli () gene disrupt the Wingless-related integration site (Wnt)/β-catenin signaling pathway, a crucial factor in carcinogenesis. This disruption may result in consequences such as aberrant spindle segregation and mitotic catastrophe. This study aimed to analyze the effectiveness of the ethanolic extract of red okra () pods (EEROP) in inducing apoptosis in colorectal cancer cells (SW480) by inhibiting the Wnt/β-catenin signaling pathway.

View Article and Find Full Text PDF

Objectives: Unlike other diseases, cancer is not just a genome disease but should broadly be viewed as a disease of the cellular machinery. Therefore, integrative multifaceted approaches are crucial to understanding the complex nature of cancer biology. Bcl-2 (B-cell lymphoma 2), encoded by the human BCL-2 gene, is an anti-apoptotic molecule that plays a key role in apoptosis and genetic variation of Bcl-2 proteins and is vital in disrupting the apoptotic machinery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!