MicroRNA-145 regulates osteoblastic differentiation by targeting the transcription factor Cbfb.

FEBS Lett

Department of Physiology and Cell Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan. Electronic address:

Published: October 2015

Osteoblastic differentiation is regulated by various factors, including hormones and transcription factors. Runt-related transcription factor 2 (Runx2) is an essential player in osteoblastogenesis and transactivates its molecular target by creating a protein complex with its hetero-dimeric partner core binding factor beta (Cbfb). However, the molecular regulation of Cbfb expression remains unknown. Here, we identified miR-145 as a crucial regulator of Cbfb expression. The expression of miR-145 increased during osteoblastogenesis, indicating that miR-145 works as an inhibitor of osteoblastogenesis. Stable expression of miR-145 decreased endogenous Cbfb expression and inhibited osteoblastogenesis, in cooperation with miR-34c. Furthermore, miR-145 decreased bone regeneration in vivo. Our results indicate that miR-145 physiologically regulates osteoblast differentiation and bone formation via Cbfb expression by forming a regulatory microRNA network.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2015.09.024DOI Listing

Publication Analysis

Top Keywords

cbfb expression
16
osteoblastic differentiation
8
transcription factor
8
expression mir-145
8
mir-145 decreased
8
cbfb
6
expression
6
mir-145
6
microrna-145 regulates
4
regulates osteoblastic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!