Cationic antimicrobial peptides (AMPs) are essential components of the innate immune system, offering protection against invading pathogenic bacteria. In nature, AMPs serve as antibiotics with broad-spectrum antimicrobial and anti-biofilm properties. However, low effective stability in high-salt environments and physiological instability in biological membranes limit the applicability of naturally occurring AMPs as novel therapeutics. We therefore designed short synthetic cationic peptides by substituting key residues in myxinidin, an AMP derived from the epidermal mucus of hagfish, with lysine (Lys, K), arginine (Arg, R), and tryptophan (Trp, W). The resultant myxinidin analogs exhibited strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains, even under high-salt conditions. Moreover, these peptides showed high binding affinity for both lipopolysaccharides and lipoteichoic acids and inhibited biofilm formation by most bacteria, but did not cause significant lysis of human red blood cells and were not cytotoxic to normal human keratinocytes. Circular dichroism analysis revealed that myxinidin and its analogs assumed α-helical or β-sheet structures within artificial liposomes and bacterial membranes. In addition, bacterial killing and membrane permeation experiments demonstrated that the myxinidin analogs permeated through bacterial membranes, leading to cytoplasmic disruption and cell death. Taken together, these findings suggest myxinidin analogs may be promising candidate antibiotic agents for therapeutic application against antibiotic-resistant bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00726-015-2104-0 | DOI Listing |
J Inorg Biochem
February 2025
Department of Agricultural Science, University of Naples 'Federico II', Via Università 100, Portici, 80055 Portici, Italy. Electronic address:
Bacteria have developed a tendency to form biofilms, where bacteria live in organized structures embedded in a self-produced matrix of DNA, proteins, and polysaccharides. Additionally, bacteria need iron(III) as an essential nutrient for bacterial growth and secrete siderophore groups that sequester it from the environment. To design a molecule able both to inhibit the bacteria and to sequester iron, we developed two hydroxamate-based peptides derived from an analog (WMR-4), previously developed in our lab, of the antimicrobial peptide myxinidin.
View Article and Find Full Text PDFJ Pept Sci
July 2018
Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
Antimicrobial peptides (AMPs) are promising broad-spectrum antibiotic candidates in the wake of multi-drug resistant pathogens. Their clinical use still requires a solution based on lead optimisation and/or formulation to overcome certain limitations, such as unwanted cytotoxicity. A prodrug approach could overcome this safety barrier and can be achieved through reversible reduction or neutralisation of the AMPs' net cationic charge.
View Article and Find Full Text PDFOncotarget
October 2017
Department of Biomedical Science, Chosun University, Gwangju, Korea.
Skin wounds are continuously exposed to bacteria and can easily become infected. Infected wounds require antibiotic treatment, and infections caused by drug-resistant bacteria are an important public health problem. Antimicrobial peptides have broad-spectrum antibacterial activity, induce little or no drug resistance and may be suitable for treating skin infections caused by drug-resistant bacteria.
View Article and Find Full Text PDFAmino Acids
February 2016
Department of Biomedical Science, Chosun University, Gwangju, 501-759, Korea.
Cationic antimicrobial peptides (AMPs) are essential components of the innate immune system, offering protection against invading pathogenic bacteria. In nature, AMPs serve as antibiotics with broad-spectrum antimicrobial and anti-biofilm properties. However, low effective stability in high-salt environments and physiological instability in biological membranes limit the applicability of naturally occurring AMPs as novel therapeutics.
View Article and Find Full Text PDFAntimicrob Agents Chemother
September 2014
Department of Pharmacy, CIRPEB, and DFM, University of Naples Federico II, Naples, Italy Istituto di Biostrutture e Bioimmagini, CNR, Naples, Italy
The marine environment has been poorly explored in terms of potential new molecules possessing antibacterial activity. Antimicrobial peptides (AMPs) offer a new potential class of pharmaceuticals; however, further optimization is needed if AMPs are to find broad use as antibiotics. We focused our studies on a peptide derived from the epidermal mucus of hagfish (Myxine glutinosa L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!