Power amplification in an isolated muscle-tendon unit is load dependent.

J Exp Biol

Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.

Published: November 2015

During rapid movements, tendons can act like springs, temporarily storing work done by muscles and then releasing it to power body movements. For some activities, such as frog jumping, energy is released from tendon much more rapidly than it is stored, thus amplifying muscle power output. The period during which energy is loaded into a tendon by muscle work may be aided by a catch mechanism that restricts motion, but theoretical studies indicate that power can be amplified in a muscle-tendon load system even in the absence of a catch. To explore the limits of power amplification with and without a catch, we studied the bullfrog plantaris muscle-tendon during in vitro contractions. A novel servomotor controller allowed us to measure muscle-tendon unit (MTU) mechanical behavior during contractions against a variety of simulated inertial-gravitational loads, ranging from zero to 1× the peak isometric force of the muscle. Power output of the MTU system was load dependent and power amplification occurred only at intermediate loads, reaching ∼1.3× the peak isotonic power output of the muscle. With a simulated anatomical catch mechanism in place, the highest power amplification occurred at the lowest loads, with a maximum amplification of more than 4× peak isotonic muscle power. At higher loads, the benefits of a catch for MTU performance diminished sharply, suggesting that power amplification >2.5× may come at the expense of net mechanical work delivered to the load.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4664045PMC
http://dx.doi.org/10.1242/jeb.126235DOI Listing

Publication Analysis

Top Keywords

power amplification
20
muscle power
12
power output
12
power
11
muscle-tendon unit
8
load dependent
8
catch mechanism
8
amplification occurred
8
peak isotonic
8
muscle
5

Similar Publications

Wireless sensor networks often rely on battery power, which incurs high costs, considerable volume, and a limited lifespan. Additionally, the communication range of existing passive sensor tags remains short, which challenges their suitability for evolving Internet of Things (IoT) applications. This paper, therefore, presents a long-distance passive RFID sensing tag that integrates multi-source energy harvesting and reflection amplification.

View Article and Find Full Text PDF

Single-molecule sequencing technology, a novel method for gene sequencing, utilizes nano-sized materials to detect electrical and fluorescent signals. Compared to traditional Sanger sequencing and next-generation sequencing technologies, it offers significant advantages, including ultra-long read lengths, rapid sequencing, and the absence of amplification steps, making it widely applicable across various fields. By examining the development and components of single-molecule sequencing technology, it becomes clear that its unique characteristics provide new opportunities for advancing metrological traceability.

View Article and Find Full Text PDF

Sensitivity-enhanced self-powered biosensing platform for detection of sugarcane smut using Mn-doped ZIF-67, RCA-DNA nano-grid array and capacitor.

Biosens Bioelectron

January 2025

Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China. Electronic address:

Sugarcane smut is a widespread fungal disease, which severely impairs the quality and sugar yield of sugarcane. Early detection is crucial for mitigating its impact, which makes the development of a highly sensitive and accurate detection method essential. Herein, the Mn-doped zeolite imidazolate framework (ZIF-67), synthesized via a nano-confined-reactor approach, is designed to significantly enhance electron transport and boost the enzyme loading capacity within biofuel cells, thereby potentially enhancing their overall performance.

View Article and Find Full Text PDF

Unlabelled: Peripheral hearing loss is associated with the cross-modal re-organization of the auditory cortex, which can occur in both pre- and post-lingual deaf cases.

Background/objectives: Whether to rely on the visual cues in cases with severe hearing loss with adequate amplification is a matter of debate. So, this study aims to study visual evoked potentials (VEPs) in children with severe or profound HL, whether fitted with HAs or CIs.

View Article and Find Full Text PDF

Efficient optical parametric amplification in the thin film lithium niobate waveguides.

Sci Rep

January 2025

Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631, People's Republic of China.

Prominent platforms based on thin-film lithium niobate (TFLN) are superior integrated-photonics platforms for efficient optical parametric amplification (OPA), however, previously few studies have been systematically reported the gain-boosting performance of TFLN waveguides compared to bulk LN waveguides. Here, we optimize two TFLN waveguides with dispersion engineering for high-efficiency and ultra-broadband gain of OPA, then report comparative results about the efficient ultra-broadband OPA of TFLN waveguides in the case of low loss, optimized waveguide length and pump power. Note that the efficient ultra-broadband OPA of TFLN waveguides is represented by the peak gain (71.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!