Estradiol plays an important role in mediating changes in female sexual behavior across reproductive cycles. In the túngara frog [Physalaemus (=Engystomops) pustulosus], the relationship between gonadal activity and female sexual behavior, as expressed by phonotaxis, is mediated primarily by estradiol. Estradiol receptors are expressed in auditory and motivational brain areas and the hormone could serve as an important modulator of neural responses to conspecific calls. To better understand how estradiol modifies neural responses to conspecific social signals, we manipulated estradiol levels and measured expression of the immediate early gene egr-1 in the auditory midbrain, thalamus and limbic forebrain in response to conspecific or heterospecific calls. We found that estradiol and conspecific calls increased egr-1 expression in the auditory midbrain and limbic forebrain, but in the thalamus, only conspecific calls were effective. In the preoptic area, estradiol enhanced the effect of the conspecific call on egr-1 expression, suggesting that the preoptic area could act as a hormonal gatekeeper to phonotaxis. Overall, the results suggest that estradiol has broad influences on the neural circuit involved in female reproduction, particularly those implicated in phonotaxis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.127738 | DOI Listing |
J Cogn Neurosci
January 2025
National Central University, Taoyuan City, Taiwan.
Pitch variation of the fundamental frequency (F0) is critical to speech understanding, especially in noisy environments. Degrading the F0 contour reduces behaviorally measured speech intelligibility, posing greater challenges for tonal languages like Mandarin Chinese where the F0 pattern determines semantic meaning. However, neural tracking of Mandarin speech with degraded F0 information in noisy environments remains unclear.
View Article and Find Full Text PDFEmerging evidence suggests that inhibitory control (IC) plays a pivotal role in science and maths counterintuitive reasoning by suppressing incorrect intuitive concepts, allowing correct counterintuitive concepts to come to mind. Neuroimaging studies have shown greater activation in the ventrolateral and dorsolateral pFCs when adults and adolescents reason about counterintuitive concepts, which has been interpreted as reflecting IC recruitment. However, the extent to which neural systems underlying IC support science and maths reasoning remains unexplored in children.
View Article and Find Full Text PDFNeurosci Bull
January 2025
Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, College of Pharmaceutical Sciences, The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
Approximately 30%-40% of epilepsy patients do not respond well to adequate anti-seizure medications (ASMs), a condition known as pharmacoresistant epilepsy. The management of pharmacoresistant epilepsy remains an intractable issue in the clinic. Its early prediction is important for prevention and diagnosis.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Biomaterials Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit, Mauritius.
Tissue regeneration after a wound occurs through three main overlapping and interrelated stages namely inflammatory, proliferative, and remodelling phases, respectively. The inflammatory phase is key for successful tissue reconstruction and triggers the proliferative phase. The macrophages in the non-healing wounds remain in the inflammatory loop, but their phenotypes can be changed interactions with nanofibre-based scaffolds mimicking the organisation of the native structural support of healthy tissues.
View Article and Find Full Text PDFResponse preparation is accomplished by gradual accumulation in neural activity until a threshold is reached. In humans, such a preparatory signal, referred to as the lateralized readiness potential, can be observed in the EEG over sensorimotor cortical areas before execution of a voluntary movement. Although well-described for manual movements, less is known about preparatory EEG potentials for saccadic eye movements in humans and nonhuman primates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!