Building renovations increase the concentration of Aspergillus conidia in the air. In 2010, one wing of the hospital building was imploded due to structural problems. To evaluate the impact of building implosion on the concentration of fungi in the air, the demolition was performed in two phases: mechanical demolition of 30 m of the building, followed by implosion of the wing. Patients at high risk for aspergillosis were placed in protected wards. Air sampling was performed during mechanical demolition, on the day of implosion and after implosion. Total and specific fungal concentrations were compared in the different areas and periods of sampling, using the anova test. The incidence of IA in the year before and after implosion was calculated. The mean concentration of Aspergillus increased during mechanical demolition and on the day of implosion. However, in the most protected areas, there was no significant difference in the concentration of fungi. The incidence of invasive aspergillosis (cases per 1000 admissions) was 0.9 in the 12 months before, 0.4 during, and 0.5 in the 12 months after mechanical demolition (P > 0.05). Continuous monitoring of the quality of air and effective infection control measures are important to minimize the impact of building demolition.

Download full-text PDF

Source
http://dx.doi.org/10.1111/myc.12418DOI Listing

Publication Analysis

Top Keywords

mechanical demolition
16
concentration fungi
12
hospital building
8
fungi air
8
concentration aspergillus
8
impact building
8
building implosion
8
demolition day
8
day implosion
8
implosion
7

Similar Publications

Urbanization and infrastructure projects generate huge amount of construction and demolition waste (CDW), posing significant challenges for the environment and human health. In order to reduce the environment and safety risks caused by the CDW landfills, this study was amid to utilize plant roots to develop a root-CDW-soil system for strengthening the CDW and enhancing the slope stability of CDW landfills. A series of experimental analyses were conducted, focusing on shear tests of root-soil composites under various moisture conditions and root content ratios.

View Article and Find Full Text PDF

The present research incorporates five AI methods to enhance and forecast the characteristics of building envelopes. In this study, Response Surface Methodology (RSM), Support Vector Machine (SVM), Gradient Boosting (GB), Artificial Neural Networks (ANN), and Random Forest (RF) machine learning method for optimization and predicting the mechanical properties of natural fiber addition incorporated with construction and demolition waste (CDW) as replacement of Fine Aggregate in Paver blocks. In this study, factors considered were cement content, natural fine aggregate, CDW, and coconut fibre, while the resulting measure was the machinal properties of the paver blocks.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how ultrafine recycled powder (URP) from construction waste affects hydration, setting time, and shrinkage in Portland cement pastes.
  • The addition of URP accelerates hydration by providing more nucleation sites, leading to quicker setting times but increased chemical shrinkage.
  • At 7.5% URP, cement mortar shows improved strength with compressive strength reaching 23.0 MPa and flexural strength at 3.7 MPa after 3 days of curing, due to secondary hydration reactions.
View Article and Find Full Text PDF

The use of recycled aggregates in the production of concrete and mortar represents a sustainable way to reintroduce these constituents-which are typically treated as waste and disposed of-in the production chain, providing new value to potentially polluting materials. The effect of recycled aggregates has been widely studied in the production of concrete due to the directions of National Standards in Italy; however, their role in the manufacturing of mortar must be investigated further due to the high variability that can be observed in the literature. In particular, the aim of this paper is the mechanical characterization of sustainable mortars defined by different mix designs and different binders, in which the aggregates are gradually replaced by a recycled sand obtained from the grinding of construction and demolition wastes, which could include old concrete, clay bricks, and minimal amounts of other kinds of residual materials.

View Article and Find Full Text PDF

This study focuses on modelling sustainable concretes' mechanical and environmental properties with interpretable artificial intelligence-based automated rule extraction, management of waste materials, and meeting future prospects. In this context, 24 sustainable concrete series containing fly ash and recycled aggregates were produced. Compressive strength tests were performed on these specimens at 7, 28, and 90 days, and their mechanical properties were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!