Background: The mechanisms by which genetic variants, such as single nucleotide polymorphisms (SNPs), identified in genome-wide association studies act to influence body mass remain unknown for most of these SNPs, which continue to puzzle the scientific community. Recent evidence points to the epigenetic and chromatin states of the genome as having important roles.
Methods: We genotyped 355 healthy young individuals for 52 known obesity-associated SNPs and obtained DNA methylation levels in their blood using the Illumina 450 K BeadChip. Associations between alleles and methylation at proximal cytosine residues were tested using a linear model adjusted for age, sex, weight category, and a proxy for blood cell type counts. For replication in other tissues, we used two open-access datasets (skin fibroblasts, n = 62; four brain regions, n = 121-133) and an additional dataset in subcutaneous and visceral fat (n = 149).
Results: We found that alleles at 28 of these obesity-associated SNPs associate with methylation levels at 107 proximal CpG sites. Out of 107 CpG sites, 38 are located in gene promoters, including genes strongly implicated in obesity (MIR148A, BDNF, PTPMT1, NR1H3, MGAT1, SCGB3A1, HOXC12, PMAIP1, PSIP1, RPS10-NUDT3, RPS10, SKOR1, MAP2K5, SIX5, AGRN, IMMP1L, ELP4, ITIH4, SEMA3G, POMC, ADCY3, SSPN, LGR4, TUFM, MIR4721, SULT1A1, SULT1A2, APOBR, CLN3, SPNS1, SH2B1, ATXN2L, and IL27). Interestingly, the associated SNPs are in known eQTLs for some of these genes. We also found that the 107 CpGs are enriched in enhancers in peripheral blood mononuclear cells. Finally, our results indicate that some of these associations are not blood-specific as we successfully replicated four associations in skin fibroblasts.
Conclusions: Our results strongly suggest that many obesity-associated SNPs are associated with proximal gene regulation, which was reflected by association of obesity risk allele genotypes with differential DNA methylation. This study highlights the importance of DNA methylation and other chromatin marks as a way to understand the molecular basis of genetic variants associated with human diseases and traits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599317 | PMC |
http://dx.doi.org/10.1186/s13073-015-0225-4 | DOI Listing |
Eur J Pediatr
December 2024
Department of Clinical Pathology Faculty of Medicine, Mansoura University, Mansoura, Egypt.
Unlabelled: Children with Down syndrome (DS) have a higher incidence of overweight and obesity compared to typically developing peers. The fat mass and obesity-associated gene (FTO) is one of the early identified genes linked to obesity in various populations. To date, the FTO rs17817449 gene polymorphism has not been investigated in overweight/obese-DS (ODS) individuals.
View Article and Find Full Text PDFJ Nutr Sci
December 2024
Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Clin Neuropsychiatry
October 2024
I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119435.
Am J Hum Genet
November 2024
Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA; Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. Electronic address:
Genes (Basel)
September 2024
Department of Endocrinology, C. I. Parhon Institute of Endocrinology, Carol Davila University of Medicine and Pharmacy, 011863 Bucharest, Romania.
Introduction: The Fat Mass and Obesity-Associated () gene encodes a demethylase, which modulates RNA N6-methyladenosine (m6A) and plays a regulatory role in adipocyte differentiation and the pathogenesis of human obesity.
Methods: To understand the potential role of in osteoporosis (OP), we investigated five single nucleotide variations (SNVs) in intron 1 (rs8057044, rs8050136, rs9939609, rs62033406, and rs9930506) of the gene, and a missense SNV i.e.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!