The insulinotropic action of glucose, the most potent physiologic insulin secretagogue, involves its metabolism. However, no glucose metabolite has ever been identified as a key intermediate. We tested the abilities of a number of glucose metabolites to stimulate insulin release from pancreatic islets. Of all of these metabolites, glyceraldehyde 3-phosphate was the most potent insulin secretagogue. In numerous experiments over 3 years, insulin release by 4 mM glyceraldehyde phosphate ranged from 50 to 200% of that initiated by 16.7 mM glucose--a near-maximal insulin stimulus. At concentrations of 1 and 4 mM, glyceraldehyde phosphate was even more potent than the known secretagogues glucose and glyceraldehyde. Glucose metabolites were also tested for their ability to stimulate inositol tris-, bis-, and monophosphate formation by permeabilized islets. Only glyceraldehyde phosphate stimulated inositol phosphate formation and this stimulation occurred at concentrations of glyceraldehyde phosphate which could be present in the beta cell under physiologic conditions (K0.5 = 25 microM). The current results are consistent with the idea that glyceraldehyde phosphate is a key insulinotropic glucose metabolite that might act directly (or rather directly via a receptor) on the phospholipase C that forms inositol trisphosphate in the plasma membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0003-9861(89)90100-8DOI Listing

Publication Analysis

Top Keywords

glyceraldehyde phosphate
24
insulin secretagogue
12
glyceraldehyde
8
inositol phosphate
8
phosphate formation
8
pancreatic islets
8
glucose metabolite
8
glucose metabolites
8
insulin release
8
concentrations glyceraldehyde
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!