Self-Assembled Organic Nanocrystals with Strong Nonlinear Optical Response.

Nano Lett

Departments of Organic Chemistry, ‡Physics of Complex Systems, §Materials and Interfaces, ∥Chemical Research Support, and ⊥Veterinary Resources, Weizmann Institute of Science, Rehovot 7610001, Israel.

Published: November 2015

Facile molecular self-assembly affords a new family of organic nanocrystals that, unintuitively, exhibit a significant nonlinear optical response (second harmonic generation, SHG) despite the relatively small molecular dipole moment of the constituent molecules. The nanocrystals are self-assembled in aqueous media from simple monosubstituted perylenediimide (PDI) molecular building blocks. Control over the crystal dimensions can be achieved via modification of the assembly conditions. The combination of a simple fabrication process with the ability to generate soluble SHG nanocrystals with tunable sizes may open new avenues in the area of organic SHG materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.5b02010DOI Listing

Publication Analysis

Top Keywords

organic nanocrystals
8
nonlinear optical
8
optical response
8
self-assembled organic
4
nanocrystals
4
nanocrystals strong
4
strong nonlinear
4
response facile
4
facile molecular
4
molecular self-assembly
4

Similar Publications

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

This study explores the development and characterization of lyophilized chondroitin sulfate (CHON)-loaded solid lipid nanoparticles (SLN) as an innovative platform for advanced drug delivery. Solid lipid nanoparticles are increasingly recognized for their biocompatibility, their ability to encapsulate diverse compounds, their capacity to enhance drug stability, their bioavailability, and their therapeutic efficacy. CHON, a naturally occurring glycosaminoglycan with anti-inflammatory and regenerative properties, was integrated into SLN formulations using the hot microemulsion technique.

View Article and Find Full Text PDF

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!