Extracellular matrix accumulation and fibrosis are the features of diabetic nephropathy. PI3K (phosphatidylinositol 3-kinase)/Akt (protein kinase B) signal pathway and its inhibitor PTEN (phosphatase and tensin homolog deleted on chromosome 10) are revealed to modulate renal fibrosis. However, the exact mechanism is still not well known. In the present study we found that compared with normal mice, diabetic mice showed decreased PTEN, increased phospho-Akt (Ser 473), phospho-Akt (Thr 308), CTGF (connective tissue growth factor), α-SMA (α-smooth muscle actin), and matricellular protein in kidney. Knocking down of PTEN caused an increase in phospho-Akt (Ser 473), phospho-Akt (Thr 308), CTGF, secreted fibronectin, and secreted Col 3 in HKC cells (human renal tubular epithelial cells). Again, in vitro experiment revealed 1.89, 2.18, 1.92, 3.06, 2.06-fold increases of phospho-Akt (Ser 473), phospho-Akt (Thr 308), CTGF, secreted fibronectin, and secreted Col 3 in high glucose-stimulated HKC cells in comparison with normal control cells. Furthermore, knocking down of CTGF reversed increased secreted fibronectin and Col 3 in high glucose-treated HKC cells. Moreover, transfection of PTEN expression vector prevented high glucose-caused these changes in HKC cells. Especially, CTGF expression, secretion of fibronectin and Col 3 were, respectively, decreased by 38.81, 53.85, and 39.12%. The treatment of LY294002 inhibited phospho-Akt (Ser 473) and phospho-Akt (Thr 308) expression followed by decreased CTGF, secretory fibronectin and secretory Col 3 in high glucose-treated HKC cells. In the end our study suggests that PTEN regulates renal extracellular matrix production via activated Akt and increased CTGF in diabetes mellitus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.25402 | DOI Listing |
Microorganisms
January 2025
Department of Food Science and Technologies for Sustainable Agro-Food Chain (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, PC, Italy.
This study investigated whether viable cells, dead cells or cell-free supernatants (CFS) were responsible for the biocontrol effect of strains from two important bacterial genera, and , known for their antifungal properties against plant pathogens and food spoilage microorganisms. Specifically, the capability of these strains to produce extracellular hydrolytic enzymes on specified media was assessed, along with their effectiveness in inhibiting the mycelial growth of several phytopathogenic fungi (, , and ) using dual culture plate assays. Results from these inhibition assays revealed that PF05 and LMG 23520 strains were the most effective in suppressing fungal growth, especially .
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Department of Internal Medicine and Gastroenterology, Internistisches Klinikum München Süd, Am Isarkanal 36, Munich, Germany.
Front Cell Dev Biol
August 2024
Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Eur J Med Res
August 2024
Computer Engineering Department, Mazandaran University of Science and Technology (MUST), Babol, Iran.
Background: Chronic kidney disease presents global health challenges, with hemodialysis as a common treatment. However, non-dialyzable uremic toxins demand further investigation for new therapeutic approaches. Renal tubular cells require scrutiny due to their vulnerability to uremic toxins.
View Article and Find Full Text PDFCell Mol Life Sci
July 2024
Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China.
Ischemia-reperfusion injury (IRI) is a major event in renal transplantation, leading to adverse outcomes. Bone marrow mesenchymal stem cells (BMSCs) are novel promising therapeutics for repairing kidney injuries. The therapeutic efficacy of BMSCs with ISL1 overexpression in renal IRI and its underlying mechanism need to be investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!