Monodisperse macroporous poly(glycidyl methacrylate) (PGMA) microspheres were used as a template for preparing porous silica particles. The starting polymer microspheres that were 9.3 microm in size were synthesized by multistep swelling polymerization using a modified Ugelstad technique. Subsequently, silica (SiO2) was deposited on the surface and inside the PGMA microspheres to produce poly(glycidyl methacrylate)-silica hybrid particles (PGMA-SiO2). Upon calcination of the PGMA-SiO2 microspheres, porous silica particles were formed. The morphology, particle size, polydispersity and inner structure of the silica microspheres were investigated by scanning and transmission electron microscopy. Thermogravimetric analysis and dynamic adsorption of nitrogen determined the amount of silica formed and its specific surface area. Compared with the starting PGMA microspheres, the size of the porous silica particles decreased by up to 30%. These porous silica microspheres are promising for chromatography and biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.33549/physiolres.933135DOI Listing

Publication Analysis

Top Keywords

porous silica
20
silica particles
16
pgma microspheres
12
silica
8
polyglycidyl methacrylate
8
microspheres
8
microspheres template
8
silica microspheres
8
porous
5
particles
5

Similar Publications

Preparation of the immobilized α-adrenoceptor column by the ultra-high affinity protein pair CL7/Im7 and its application in drug-protein interaction analysis.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China; Department of Clinical Pharmaceutics, Chang An District Hospital, Xi'an, Shaanxi 710118, China. Electronic address:

Immobilizing the target protein on a solid surface with controlled orientation, high specificity, and maintained activity is a proven strategy to enhance the stability of the protein. In this study, we employed an ultra-high affinity protein pair consisting of a mutant of colicin E7 Dnase and its corresponding inhibitor, immunity protein 7(Im7), to develop an immobilized α-adrenoceptor (α-AR) column. Briefly, we expressed α-AR fused with CL7 as a tag at its C-terminus in Escherichia coli cells.

View Article and Find Full Text PDF

Unlike homogeneous metal complexes, achieving absolute control over reaction selectivity in heterogeneous catalysts remains a formidable challenge due to the unguided molecular adsorption/desorption on metal-surface sites. Conventional organic surface modifiers or ligands and rigid inorganic and metal-organic porous shells are not fully effective. Here, we introduce the concept of "ligand-porous shell cooperativity" to desirably reaction selectivity in heterogeneous catalysis.

View Article and Find Full Text PDF

Microfluidic-assisted sol-gel preparation of monodisperse mesoporous silica microspheres with controlled size, surface morphology, porosity and stiffness.

Nanoscale

January 2025

National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

The controllable synthesis of monodisperse mesoporous silica microspheres with unique physicochemical properties is becoming increasingly important for a variety of applications such as catalysts, chromatography, drug delivery and sensors. Here, we report a facile microfluidic-assisted sol-gel method for the preparation of silica microspheres with precisely controlled properties such as the size of the microspheres, the surface morphology, porosity and stiffness. All these properties can be manipulated by changing specific synthesis parameters, such as changing the microfluidic channels to tune the size of the microdroplets (tens to hundreds of microns), changing the contents of the precursor solution to manipulate the surface morphology (wrinkled to smooth surface) and changing the gelation/annealing conditions to tune the porosity (surface area up to 1021 m g) and stiffness of the microspheres (elastic modulus tunable from 0.

View Article and Find Full Text PDF

Elucidating Mesostructural Effects on Thermal Conductivity for Enhanced Insulation Applications.

Small

January 2025

Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China.

Thermal management is a key link in improving energy utilization and preparing insulation materials with excellent performance is the core technological issue. Complex and irregular pore structures of insulation materials hinder the exploration of structure-property relationships and the further promotion of material performance. Ordered mesoporous silica (OMS) is a kind of porous material with ordered frameworks.

View Article and Find Full Text PDF

Advancements in functional adsorbents for sustainable recovery of rare earth elements from wastewater: A comprehensive review of performance, mechanisms, and applications.

Adv Colloid Interface Sci

January 2025

School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China.

Rare earth elements (REEs) are crucial metallic resources that play an essential role in national economies and industrial production. The reclaimation of REEs from wastewater stands as a significant supplementary strategy to bolster the REEs supply. Adsorption techniques are widely recognized as environmentally friendly and sustainable methods for the separation of REEs from wastewater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!