Background: The amount of drug aerosol from an inhaler that can pass through an in vitro model of the mouth and throat (MT) during a realistic breath or inhalation flow rate vs. time profile (IP) is designated the total lung dose in vitro, or TLDin vitro. This article describes a clinical study that enabled us to recommend a general method of selecting IPs for use with powder inhalers of known airflow resistance (R) provided subjects followed written instructions either alone or in combination with formal training.

Methods: In a drug-free clinical trial, inhaler-naïve, nonsmoking healthy adult human volunteers were screened for normal pulmonary function. IPs were collected from each volunteer inhaling through different air flow resistances after different levels of training. IPs were analyzed to determine the distribution of inhalation variables across the population and their dependence on training and airflow resistance.

Results: Equations for IP simulation are presented that describe the data including confidence limits at each resistance and training condition. Realistic IPs at upper (90%), median (50%), and lower (10%) confidence limits were functions of R and training. Peak inspiratory flow rates (PIFR) were inversely proportional to R so that if R was assigned, values for PIFR could be calculated. The time of PIFR, TPIFR, and the total inhaled volume (V) were unrelated to R, but dependent on training. Once R was assigned for a powder inhaler to be tested, a range of simulated IPs could be generated for the different training scenarios. Values for flow rate acceleration and depth of inspiration could also be varied within the population limits of TPIFR and V.

Conclusions: The use of simulated IPs, in concert with realistic in vitro testing, should improve the DPI design process and the confidence with which clinical testing may be initiated for a chosen device.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5079450PMC
http://dx.doi.org/10.1089/jamp.2015.1215DOI Listing

Publication Analysis

Top Keywords

flow rate
8
confidence limits
8
simulated ips
8
ips
6
training
6
vitro
5
vitro tests
4
tests aerosol
4
aerosol deposition
4
deposition simulating
4

Similar Publications

Aluminum Induces Neurotoxicity through the MicroRNA-98-5p/Insulin-like Growth Factor 2 Axis.

ACS Chem Neurosci

January 2025

Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.

Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)], respectively.

View Article and Find Full Text PDF

In this study, a new reversed phase high performance liquid chromatography method using two detectors was developed for the analysis of degradation and process impurities of ivabradine in pharmaceutical preparations. A PDA detector set to 285 nm wavelength and a QDa detector set to positive scan mode were used in the method. In the developed method, the separation process was carried out in a Zorbax phenyl column with a gradient application of a 0.

View Article and Find Full Text PDF

Introduction: Water vapor thermal therapy (WVTT; REZUM™; Boston, USA) offers symptom relief with reduced risks of complications in patients with lower urinary tract symptoms (LUTS) related to benign prostatic obstruction (BPO). WVTT therapy has been validated in the pivotal study in men with smaller prostates (< 80 cc). Yet, its feasibility for larger prostates (≥ 80 cc) remains underexplored.

View Article and Find Full Text PDF

The etiology of rheumatoid arthritis (RA) is multifaceted. One of the hypothesized pathways that results in the progression of RA is regulatory T cell (Treg) dysfunction. The pro-osteoclastogenic and immunogenic characteristics of microribonucleic acid (microRNA)-21 (miR-21) suggest its role in RA progression.

View Article and Find Full Text PDF

Dry powders offer the potential to increase stability and reduce cold-chain requirements associated with the distribution of vaccines and other thermally sensitive products. The Alberta Idealized Nasal Inlet (AINI) is a representative geometry for characterization of nasal products that may prove useful in examining intranasal delivery of powders. Spray-dried trehalose powders were loaded at 10, 20, and 40 mg doses into active single-dose devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!