A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Effect of Clevidipine on Cerebral Blood Flow Velocity and Carbon Dioxide Reactivity in Human Volunteers. | LitMetric

The Effect of Clevidipine on Cerebral Blood Flow Velocity and Carbon Dioxide Reactivity in Human Volunteers.

J Neurosurg Anesthesiol

*Department of Anesthesiology, University of California †Veterans Affairs Medical Center, San Diego, CA ‡Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA.

Published: October 2016

Background: Clevidipine is a short acting, esterase metabolized, calcium channel antagonist administered as a continuous infusion for control of hypertension. Its profile allows for rapid titration and may be uniquely suited to achieving tight hemodynamic targets in neurosurgical and neurocritical care patients. The present study was designed to investigate the effect of clevidipine infusion on cerebral blood flow and cerebral CO2 responsiveness as measured by cerebral blood flow velocity (CBFV) using transcranial Doppler.

Materials And Methods: CBFV was continuously recorded in 5 healthy subjects during the following conditions: baseline 1 (BL1); baseline with hyperventilation (HV1); baseline 2 (BL2); clevidipine infusion to achieve 15% mean arterial pressure (MAP) reduction (C15); clevidipine infusion to achieve 30% MAP reduction (C30); clevidipine infusion to 30% MAP reduction with hyperventilation (HV2).

Results: The mean CBFV during intermediate (C15) or maximum (C30) dose clevidipine infusion was unchanged compared with baseline (BL2) (F2,8=0.66; P=0.54). Cerebral CO2 reactivity, expressed as %[INCREMENT]CBFV/[INCREMENT]mm Hg CO2, was not significantly different in the presence of maximal-dose clevidipine (HV2) as compared with baseline (HV1) (1.6±0.4 vs. 1.6±0.3%[INCREMENT]CBFV/[INCREMENT]mm Hg CO2, P=0.73).

Conclusions: Clevidipine infusion did not significantly increase CBFV nor was cerebral CO2 reactivity reduced during maximal-dose clevidipine infusion. Further systematic investigation of clevidipine in patients with central nervous system pathology seems justified.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ANA.0000000000000236DOI Listing

Publication Analysis

Top Keywords

clevidipine infusion
28
cerebral blood
12
blood flow
12
cerebral co2
12
map reduction
12
clevidipine
11
flow velocity
8
infusion
8
baseline bl2
8
infusion achieve
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!