In this study we present the development of responsive nanoscale substrates exhibiting cell-guiding properties based on incorporated bioactive signaling cues. The investigative approach considered the effect of two different surface-bound growth factors (GFs) on cell behavior and response: hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF). Two surface biofunctionalization strategies were explored in order to conceive versatile, bioactive thin polymer brush films. Polymer brushes made of tethered poly(acrylic)acid (PAA) polymer layers with a high grafting density of polymer chains were biofunctionalized with GFs either by physisorption or chemisorption. Both GFs showed high binding efficiencies to PAA brushes based on their initial loading concentrations. The GF release kinetics can be distinguished depending on the applied biofunctionalization method. Specifically, a high initial burst followed by a constant slow release was observed in the case of both physisorbed HGF and bFGF. In contrast, the release kinetics of chemisorbed GFs were quite different. Remarkably, chemisorbed HGF remained bound to the brush surface for over 1 week, whereas 50% of chemisorbed bFGF was released slowly. Furthermore, the effect of these GF-biofunctionalized PAA brushes on different cells was investigated. A human hepatoma cell line (HepG2) was used to analyze the bioactivity of HGF-modified PAA brushes by measuring cell growth inhibition and scattering effects. Additionally, the differentiation of mouse embryonic stem cells (mESCs) toward endoderm was studied on bFGF-modified PAA brush surfaces. Finally, the results illustrate that PAA brushes, particularly those biofunctionalized with chemisorbed GFs, produce an expected measurable effect on both cell types. Therefore, PAA polymer brushes biofunctionalized with GFs can be used as bioactive cell culture substrates with tuned efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.5b00967DOI Listing

Publication Analysis

Top Keywords

paa brushes
16
growth factor
8
polymer brushes
8
paa polymer
8
biofunctionalized gfs
8
release kinetics
8
chemisorbed gfs
8
brushes biofunctionalized
8
paa
7
polymer
6

Similar Publications

Unilateral antibacterial Janus hydrogel hemostatic dressing prepared by the dragging effect of a brush.

Colloids Surf B Biointerfaces

March 2025

College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, PR China. Electronic address:

Hemostasis and subsequent anti-inflammatory measures are essential for wound healing in the human body following trauma or surgical procedures. Here, we try to use the dragging effect of a brush to prepare a Janus hydrogel with the least amount of bacteriostatic agent. The synthesized suspension of polyvinylbenzene-silica@quaternary ammonium salt (PDVB-SiO@NR) Janus particles (JNPs) was selected as ink and brush coated onto one side of a polyacrylic acid (PAA) hydrogel, resulting in Janus hydrogel (JNPs≌PAA).

View Article and Find Full Text PDF

Micelle-like Nanoparticles for Drug Delivery and Magnetically Enhanced Tumor Chemotherapy.

ACS Biomater Sci Eng

December 2024

School of Life Science and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, China.

Using the coordination bonds between transition metal atoms and electron-rich functional groups, we synthesized two kinds of micelle-like nanoparticles. Using magnetic FeO as the core, poly(methyl methacrylate) (PMMA) and poly(acrylic acid) (PAA) brushes were grafted via activators regenerated by electron transfer for atom transfer radical polymerization (ARGET-ATRP), which formed micelle-like magnetic nanoparticles FeO/PAA-PMMA with a hydrophobic outer layer and FeO/PMMA-PAA with a hydrophilic outer layer. Both the micelle-like nanoparticles had amphiphilic properties and can be used to load hydrophilic or hydrophobic drugs.

View Article and Find Full Text PDF

Stimuli-responsive catalysts with exceptional kinetics and complete recoverability for efficient recyclability are essential in, for example, converting pollutants and hazardous organic compounds into less harmful chemicals. Here, we used a novel approach to stabilize silver nanoparticles (NPs) through magneto/hydro-responsive anionic polymer brushes that consist of poly (acrylic acid) (PAA) moieties at the amine functional groups of chitosan. Two types of responsive catalyst systems with variable silver loading (wt.

View Article and Find Full Text PDF

Assessing the efficacy of sanitizer sprays during brush or polyvinyl chloride (PVC) roller treatment to reduce Salmonella populations on whole mangoes.

Food Res Int

September 2024

Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA. Electronic address:

Sanitizer spray and brush roller treatments have been documented as an effective means of reducing Salmonella on the surface of produce. The purpose of this study was to evaluate the efficacy of chlorine (NaOCl), peroxyacetic acid (PAA), and chlorine dioxide (ClO) sprays to reduce Salmonella populations on the surface of mangoes during washing with brush or polyvinyl chloride (PVC) rollers. Whole mangoes were spot inoculated with 100 µL of a rifampicin-resistant Salmonella (8 log CFU/mL) cocktail at the equator and dried for 1 h.

View Article and Find Full Text PDF

Janus bottlebrush compatibilizers.

Soft Matter

February 2024

Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.

Bottlebrush random copolymers (BRCPs), consisting of a random distribution of two homopolymer chains along a backbone, can segregate to the interface between two immiscible homopolymers. BRCPs undergo a reconfiguration, where each block segregates to one of the homopolymer phases, adopting a Janus-type structure, reducing the interfacial tension and promoting adhesion between the two homopolymers, thereby serving as a Janus bottlebrush copolymer (JBCP) compatibilizer. We synthesized a series of JBCPs by copolymerizing deuterated or hydrogenated polystyrene (DPS/PS) and poly(-butyl acrylate) (PtBA) macromonomers using ruthenium benzylidene-initiated ring-opening metathesis polymerization (ROMP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!