Sos1 Regulates Macrophage Podosome Assembly and Macrophage Invasive Capacity.

J Immunol

Department of Pathology and Diagnostics, Section of General Pathology, University of Verona, 37134 Verona, Italy;

Published: November 2015

Podosomes are protrusive structures implicated in macrophage extracellular matrix degradation and three-dimensional migration through cell barriers and the interstitium. Podosome formation and assembly are regulated by cytoskeleton remodeling requiring cytoplasmic tyrosine kinases of the Src and the Abl families. Considering that Abl has been reported to phosphorylate the guanine nucleotide exchange factor Sos1, eliciting its Rac-guanine nucleotide exchange factor activity, and Rac regulates podosome formation in myeloid cells and invadopodia formation in cancer cells, we addressed whether Sos1 is implicated in podosome formation and function in macrophages. We found that ectopically expressed Abl or the Src kinase Fgr phosphorylate Sos1, and the Src kinases Hck and Fgr are required for Abl and Sos1 phosphorylation and Abl/Sos1 interaction in macrophages. Sos1 localizes to podosomes in both murine and human macrophages, and its silencing by small interfering RNA results in disassembly of murine macrophage podosomes and a marked reduction of GTP loading on Rac. Matrix degradative capacity, three-dimensional migration through Matrigel, and transmigration through an endothelial cell monolayer of Sos1-silenced macrophages were inhibited. In addition, Sos1- or Abl-silenced macrophages, or macrophages treated with the selective Abl inhibitor imatinib mesylate had a reduced capability to migrate into breast tumor spheroids, the majority of cells remaining at the margin and the outer layers of the spheroid itself. Because of the established role of Src and Abl kinases to regulate also invadopodia formation in cancer cells, our findings suggest that targeting the Src/Abl/Sos1/Rac pathway may represent a double-edged sword to control both cancer-invasive capacities and cancer-related inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1500579DOI Listing

Publication Analysis

Top Keywords

podosome formation
12
three-dimensional migration
8
src abl
8
nucleotide exchange
8
exchange factor
8
invadopodia formation
8
formation cancer
8
cancer cells
8
sos1
6
abl
6

Similar Publications

NOX proteins and ROS generation: role in invadopodia formation and cancer cell invasion.

Biol Res

December 2024

Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5090000, Valdivia, Chile.

NADPH oxidases (NOX) are membrane-bound proteins involved in the localized generation of reactive oxygen species (ROS) at the cellular surface. In cancer, these highly reactive molecules primarily originate in mitochondria and via NOX, playing a crucial role in regulating fundamental cellular processes such as cell survival, angiogenesis, migration, invasion, and metastasis. The NOX protein family comprises seven members (NOX1-5 and DUOX1-2), each sharing a catalytic domain and an intracellular dehydrogenase site.

View Article and Find Full Text PDF

Technology Innovation for Discovering Renal Autoantibodies in Autoimmune Conditions.

Int J Mol Sci

November 2024

Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gaslini, 16147 Genova, Italy.

Autoimmune glomerulonephritis is a homogeneous area of renal pathology with clinical relevance in terms of its numerical impact and difficulties in its treatment. Systemic lupus erythematosus/lupus nephritis and membranous nephropathy are the two most frequent autoimmune conditions with clinical relevance. They are characterized by glomerular deposition of circulating autoantibodies that recognize glomerular antigens.

View Article and Find Full Text PDF

CD38, a nicotinamide adenine dinucleotide (NAD) glycohydrolase, increases during infection or inflammation. Therefore, we aimed to evaluate the effects of a CD38 inhibitor (78c) on NAD levels, IL-1β, IL-6, TNF-α cytokine expressions, and osteoclastogenesis. The results show that treatment with 78c on murine BMMs dose-dependently reduced CD38, reversed the decline of NAD, and inhibited IL-1β, IL-6, and TNF-α pro-inflammatory cytokine levels induced by oral pathogen () or () or by advanced glycation end products (AGEs).

View Article and Find Full Text PDF

Autophagy Regulator Rufy 4 Promotes Osteoclastic Bone Resorption by Orchestrating Cytoskeletal Organization via Its RUN Domain.

Cells

October 2024

Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.

Rufy4, a protein belonging to the RUN and FYVE domain-containing protein family, participates in various cellular processes such as autophagy and intracellular trafficking. However, its role in osteoclast-mediated bone resorption remains uncertain. In this study, we investigated the expression and role of the gene in osteoclasts using small interfering RNA (siRNA) transfection and gene overexpression systems.

View Article and Find Full Text PDF

Growing evidence indicates that brain-derived neurotrophic factor (BDNF) is produced in contracting skeletal muscles and is secreted as a myokine that plays an important role in muscle metabolism. However, the involvement of muscle-generated BDNF and the regulation of its vesicular trafficking, localization, proteolytic processing, and spatially restricted release during the development of vertebrate neuromuscular junctions (NMJs) remain largely unknown. In this study, we first reported that BDNF is spatially associated with the actin-rich core domain of podosome-like structures (PLSs) at topologically complex acetylcholine receptor (AChR) clusters in cultured Xenopus muscle cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!