Background: Oxidative stress is closely associated with cardiac fibrosis. However, the effect of copper, zinc-superoxide dismutase (SOD1) as a therapeutic agent is limited due to the insufficient transduction. This study was aimed to investigate the effect of PEP-1-SOD1 fusion protein on angiotensin II (ANG II)-induced collagen metabolism in rat cardiac myofibroblasts (MCFs).

Methods: MCFs were pretreated with SOD1 or PEP-1-SOD1 fusion protein for 2 h followed by incubation with ANG II for 24 h. Cell proliferation was measured by Cell Counting Kit-8. Superoxide anion productions were detected by both fluorescent microscopy and Flow Cytometry. MMP-1 and TIMP-1 were determined by ELISA. Intracellular MDA content and SOD activity were examined by commercial assay kits. Protein expression was analyzed by western blotting.

Results: PEP-1-SOD1 fusion protein efficiently transduced into MCF, scavenged intracellular O2 (-), decreased intracellular MDA content, increased SOD activity, suppressed ANG II-induced proliferation, reduced expression of TGF-β1, α-SMA, collagen type I and III, restored MMP-1 secretion, and attenuated TIMP-1 secretion.

Conclusion: PEP-1-SOD1 suppressed MCF proliferation and differentiation and reduced production of collagen type I and III. Therefore, PEP-1-SOD1 fusion protein may be a potential novel therapeutic agent for cardiac fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597385PMC
http://dx.doi.org/10.1186/s12872-015-0103-4DOI Listing

Publication Analysis

Top Keywords

pep-1-sod1 fusion
20
fusion protein
16
ii-induced collagen
8
cardiac fibrosis
8
therapeutic agent
8
ang ii-induced
8
intracellular mda
8
mda content
8
sod activity
8
collagen type
8

Similar Publications

Cu,Zn-Superoxide Dismutase has Minimal Effects Against Cuprizone-Induced Demyelination, Microglial Activation, and Neurogenesis Defects in the C57BL/6 Mouse Hippocampus.

Neurochem Res

July 2023

Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.

Article Synopsis
  • Cuprizone causes damage to myelin and oligodendrocytes in mice, leading to reduced myelin basic protein (MBP) and activated microglia in brain regions like the hippocampus.
  • The study tested the neuroprotective effects of a fusion protein, PEP-1-SOD1, on cuprizone-induced damage and found that it partially mitigated microglial activation and MBP reduction.
  • However, PEP-1-SOD1 treatment did not significantly improve the overall demyelination or the proliferation of new neurons in the dentate gyrus, indicating limited effectiveness in protecting against cuprizone's harmful effects.
View Article and Find Full Text PDF

In the present study, we investigated the ability of Cu, Zn-superoxide dismutase (SOD1) to improve the therapeutic potential of adipose tissue-derived mesenchymal stem cells (Ad-MSCs) against ischemic damage in the spinal cord. Animals were divided into four groups: the control group, vehicle (PEP-1 peptide and artificial cerebrospinal fluid)-treated group, Ad-MSC alone group, and Ad-MSC-treated group with PEP-1-SOD1. The abdominal aorta of the rabbit was occluded for 30 min in the subrenal region to induce ischemic damage, and immediately after reperfusion, artificial cerebrospinal fluid or Ad-MSCs (2 × 10) were administered intrathecally.

View Article and Find Full Text PDF

PEP-1-SOD1 fusion proteins block cardiac myofibroblast activation and angiotensin II-induced collagen production.

BMC Cardiovasc Disord

October 2015

Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China.

Background: Oxidative stress is closely associated with cardiac fibrosis. However, the effect of copper, zinc-superoxide dismutase (SOD1) as a therapeutic agent is limited due to the insufficient transduction. This study was aimed to investigate the effect of PEP-1-SOD1 fusion protein on angiotensin II (ANG II)-induced collagen metabolism in rat cardiac myofibroblasts (MCFs).

View Article and Find Full Text PDF

PEP 1-Cu/Zn superoxide dismutase (PEP-1-SOD1) fusion protein preconditioning has been reported to protect the myocardium from ischemia/reperfusion (I/R)-induced injury by decreasing the infarct size, reducing levels of cardiomyocyte apoptosis and reducing the release of myocardial-specific biomarkers. The aim of the present study was to examine the effects of PEP-1-SOD1 pretreatment on I/R-induced ventricular arrhythmias in Langendorff-perfused rat hearts. The isolated rat hearts were pretreated with PEP-1-SOD1 prior to I/R, and the I/R-induced hemodynamic parameters, infarct size and ventricular arrhythmias were then assessed.

View Article and Find Full Text PDF

Oxidative stress initiates age-related reduction in hippocampal neurogenesis and the use of antioxidants has been proposed as an effective strategy to prevent or attenuate the reduction of neurogenesis in the hippocampus. In the present study, we investigated the effects of Cu,Zn-superoxide dismutase (SOD1) and/or peroxiredoxin-2 (PRX2) on cell proliferation and neuroblast differentiation in the dentate gyrus in a model of D-galactose-induced aging model. For this study, we constructed an expression vector, PEP-1, fused PEP-1 with SOD1 or PRX2, and generated PEP-1-SOD1 and PEP-1-PRX2 fusion protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!