Background: Oxidative stress is closely associated with cardiac fibrosis. However, the effect of copper, zinc-superoxide dismutase (SOD1) as a therapeutic agent is limited due to the insufficient transduction. This study was aimed to investigate the effect of PEP-1-SOD1 fusion protein on angiotensin II (ANG II)-induced collagen metabolism in rat cardiac myofibroblasts (MCFs).
Methods: MCFs were pretreated with SOD1 or PEP-1-SOD1 fusion protein for 2 h followed by incubation with ANG II for 24 h. Cell proliferation was measured by Cell Counting Kit-8. Superoxide anion productions were detected by both fluorescent microscopy and Flow Cytometry. MMP-1 and TIMP-1 were determined by ELISA. Intracellular MDA content and SOD activity were examined by commercial assay kits. Protein expression was analyzed by western blotting.
Results: PEP-1-SOD1 fusion protein efficiently transduced into MCF, scavenged intracellular O2 (-), decreased intracellular MDA content, increased SOD activity, suppressed ANG II-induced proliferation, reduced expression of TGF-β1, α-SMA, collagen type I and III, restored MMP-1 secretion, and attenuated TIMP-1 secretion.
Conclusion: PEP-1-SOD1 suppressed MCF proliferation and differentiation and reduced production of collagen type I and III. Therefore, PEP-1-SOD1 fusion protein may be a potential novel therapeutic agent for cardiac fibrosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597385 | PMC |
http://dx.doi.org/10.1186/s12872-015-0103-4 | DOI Listing |
Neurochem Res
July 2023
Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
Neurochem Res
December 2016
Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, 18450, South Korea.
In the present study, we investigated the ability of Cu, Zn-superoxide dismutase (SOD1) to improve the therapeutic potential of adipose tissue-derived mesenchymal stem cells (Ad-MSCs) against ischemic damage in the spinal cord. Animals were divided into four groups: the control group, vehicle (PEP-1 peptide and artificial cerebrospinal fluid)-treated group, Ad-MSC alone group, and Ad-MSC-treated group with PEP-1-SOD1. The abdominal aorta of the rabbit was occluded for 30 min in the subrenal region to induce ischemic damage, and immediately after reperfusion, artificial cerebrospinal fluid or Ad-MSCs (2 × 10) were administered intrathecally.
View Article and Find Full Text PDFBMC Cardiovasc Disord
October 2015
Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China.
Background: Oxidative stress is closely associated with cardiac fibrosis. However, the effect of copper, zinc-superoxide dismutase (SOD1) as a therapeutic agent is limited due to the insufficient transduction. This study was aimed to investigate the effect of PEP-1-SOD1 fusion protein on angiotensin II (ANG II)-induced collagen metabolism in rat cardiac myofibroblasts (MCFs).
View Article and Find Full Text PDFExp Ther Med
July 2015
Institute of Clinical Medicine and Department of Cardiology, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China.
PEP 1-Cu/Zn superoxide dismutase (PEP-1-SOD1) fusion protein preconditioning has been reported to protect the myocardium from ischemia/reperfusion (I/R)-induced injury by decreasing the infarct size, reducing levels of cardiomyocyte apoptosis and reducing the release of myocardial-specific biomarkers. The aim of the present study was to examine the effects of PEP-1-SOD1 pretreatment on I/R-induced ventricular arrhythmias in Langendorff-perfused rat hearts. The isolated rat hearts were pretreated with PEP-1-SOD1 prior to I/R, and the I/R-induced hemodynamic parameters, infarct size and ventricular arrhythmias were then assessed.
View Article and Find Full Text PDFNeurochem Res
October 2013
Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, 200-701, South Korea.
Oxidative stress initiates age-related reduction in hippocampal neurogenesis and the use of antioxidants has been proposed as an effective strategy to prevent or attenuate the reduction of neurogenesis in the hippocampus. In the present study, we investigated the effects of Cu,Zn-superoxide dismutase (SOD1) and/or peroxiredoxin-2 (PRX2) on cell proliferation and neuroblast differentiation in the dentate gyrus in a model of D-galactose-induced aging model. For this study, we constructed an expression vector, PEP-1, fused PEP-1 with SOD1 or PRX2, and generated PEP-1-SOD1 and PEP-1-PRX2 fusion protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!