Pulmonary arterial hypertension (PAH) is a chronic ailment of the lungs, exhibiting elevated arterial pressure and vascular resistance; with a mean arterial pressure above 25 mmHg at rest and above 30 mmHg during exercise. It is associated with poor prognosis, and its prevalence is estimated to be 15 cases per one million. The current treatment options for PAH are discussed with the prostanoid class of drugs being the most effective. The latter drugs act by dilating systemic and pulmonary arterial vascular beds and, with sustained long-term usage, altering pulmonary remodelling. They are administered as IV infusions or inhalation solutions. Despite their clinical effectiveness, prostanoids have short half-lives requiring frequent administration of 6-9 times daily and thus suffer from poor compliance. Controlled release inhalation delivery systems for treatment of PAH, ranging from liposomes, biodegradable nano- and microparticles, formation of co-precipitates and complexation with cyclodextrins, are explored. Arising from these formulation strategies, we developed novel polymeric microspheres for inhalation to reduce dosing frequency and improve medication compliance. These microspheres are designed with release modifiers, to reside in the lung which is the site of drug action for a longer duration so as to release the drug slowly and consistently over a prolonged period. This could lead to the development of the first commercially available controlled release inhalation product.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1381612821666151008124451 | DOI Listing |
Discov Oncol
January 2025
Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuzhong District, Chongqing, 400010, China.
Purpose: Nano-drug delivery systems (NDDS) have become a promising alternative and adjunctive strategy for lung cancer (LC) treatment. However, comprehensive bibliometric analyses examining global research efforts on NDDS in LC are scarce. This study aims to fill this gap by identifying key research trends, emerging hotspots, and collaboration networks within the field of NDDS and LC.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
Phosphate invert glasses (PIGs) have been attracting attention as materials for bone repair. PIGs have a high flexibility in chemical composition because they are composed of orthophosphate and pyrophosphate and can easily incorporate various ions in their glass networks. In our previous work, incorporation of niobium (Nb) into melt-quench-derived PIGs was effective in terms of controlling their ion release, and Nb ions promoted the activity of osteoblast-like cells.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia.
Materials (Basel)
December 2024
Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
Acid-fracturing technology has been applied to form pathways between deep oil/gas resources and oil production pipelines. The acid fracturing fluid is required to have special slow-release performance, with no acidity at low temperatures, while steadily generating acid at high temperatures underground. At present, commercial acid systems in oilfields present problems such as the uncontrollable release effect, high costs, and significant pollution.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Facultad de Farmacia-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Unidad nanoDrug, Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, 02071 Albacete, Albacete, Spain.
The compounds targeting the bromo and extra terminal domain proteins (BET), such as the JQ1, present potent anti-cancer activity in preclinical models, however, the application of JQ1 at the clinical level is limited by its short half-life, rapid clearance, and non-selective inhibition of BET family proteins, leading to off-target effects and resistance. To address these challenges, the optimization of JQ1 delivery has been accomplished through polylactide (PLA) nanoparticles. PLA derivatives with varying molecular weights were synthesized via ring-opening polymerization using a zinc-based initiator and characterized using thermogravimetric analysis, differential scanning calorimetry, and infrared spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!