ARGONAUTE SUBFAMILY GENES IN THE SMALL BROWN PLANTHOPPER, Laodelphax striatellus (HEMIPTERA: DELPHACIDAE).

Arch Insect Biochem Physiol

State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Published: January 2016

Argonaute (AGO) proteins are essential catalytic components of the RNA-induced silencing complex and play central roles in RNA interference. Using a combination of bioinformatics and rapid amplification of cDNA ends (RACE) methods, putative AGO subfamily members, ls-AGO1 and ls-AGO2, were cloned and characterized from the small brown planthopper, Laodelphax striatellus. The open reading frame (ORF) of ls-AGO1 is 2,820 bp long, encoding a putative protein of 939 amino acid residues, and ls-AGO2 contains an ORF of 2,490 bp, encoding 829 amino acid residues. The expected conserved PAZ and PIWI domains, and the conserved Asp-Asp-His (DDH) catalytic triad motif in the PIWI domain were observed in both ls-AGO1 and ls-AGO2. Reverse transcription-qPCR (RT-qPCR) results showed that both ls-AGO1 and ls-AGO2 were expressed in all developmental stages of L. striatellus with highest mRNA abundance in eggs. Expression of ls-AGO1 and ls-AGO2 was significantly decreased in adult insects in response to acquisition of rice black-streaked dwarf virus by second instar nymphs. mRNA expression of ls-AGO1 was significantly downregulated in response to low and high temperatures, but expression of ls-AGO2 was only affected by low temperature. ls-AGO1 and ls-AGO2 were initially downregulated when insects were transferred from rice to maize and to the wild grass Brachypodium distachyon, but expression showed partial or complete recovery 7 days after transfer. These results document that AGO subfamily members of L. striatellus are ubiquitously expressed at different developmental stages and respond to various stresses. Thus, AGO subfamily may act in regulating the stress-response of L. striatellus by controlling related gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1002/arch.21307DOI Listing

Publication Analysis

Top Keywords

ls-ago1 ls-ago2
20
ago subfamily
12
small brown
8
brown planthopper
8
planthopper laodelphax
8
laodelphax striatellus
8
subfamily members
8
amino acid
8
acid residues
8
expressed developmental
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!