The shapes of ethylene vinyl acetate (EVA) sheets are mainly square or round. The aim of this study was to elucidate a fabrication method that effectively maintains the thickness of the round sheet. Mouthguards were fabricated using EVA sheets (diameter 125 mm, thickness 4.0 mm) and a vacuum-forming machine. The sheet was pinched at the top and bottom and stabilized by the circle tray. Two heating conditions were compared: (i) the sheet was molded when it sagged 10 mm below the level of the sheet frame at the top of the post under normal conditions (N); and (ii) the sheet frame was lowered to and heated at 50 mm from the level of ordinary use and molded when it sagged 10 mm from the sheet frame (L). Two EVA sheet shapes were compared: an ordinary sheet (O) and a sheet with a horizontal v-shaped groove 30 mm from the anterior end (G). The height of the working model was 20 mm at the incisor point and 15 mm at the first molar. The sheet temperatures of the heating and non-heated surface were measured by the radiation thermometer. Post-molding thickness was determined for the incisal and molar portion. Differences in the thickness were analyzed using two-way anova. The temperature difference among points was smaller under condition L than under condition N. Thickness after formation was higher in condition L than in condition N, and was higher in condition G than in condition O. At the labial surface and the cusp, L-G was thickest. With the present techniques, uneven softening during heating can be improved by lowering the sheet frame and consequently reducing the reduction in the thickness of the sheet. Additionally, the thickness reduction is reduced by creating a horizontal groove on the sheet, establishing the clinical efficacy of this method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/edt.12232 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!