The aim of this study was to investigate the thickness of mouthguard sheet after vacuum-pressure formation based on the mouthguard sheet material. Three mouthguard sheet materials (4.0 mm thick) were compared: ethylene-vinyl acetate co-polymer (EVA), olefin co-polymer (OL), and polyolefin-polystyrene co-polymer (OS). The working model was made by hard gypsum that was trimmed to the height of 20 mm at the cutting edge of the maxillary central incisor and 15 mm at the mesiobuccal cusp of the maxillary first molar. Where the center of the softened sheet sagged 15 mm lower than the clamp, the sheet was pressed against the working model, followed by vacuum forming for 10 s and compression molding for 2 min. The thickness of mouthguard sheets after fabrication was determined for the incisal portion (incisal edge and labial surface) and molar portion (cusp and buccal surface), and dimensional measurements were obtained using a measuring device. Differences in the change in thickness due to sheet materials were analyzed by one-way analysis of variance (anova) followed by Bonferroni's multiple comparison tests. The OL sheet was thickest at all measurement points. At the incisal edge and cusp, thickness after formation was highest for OL, then EVA and finally OS. At the labial surface and buccal surface, the thickness after formation was highest for OL, then OS and finally EVA. This study suggested that post-fabrication mouthguard thickness differed according to sheet material, with the olefin co-polymer sheet having the smallest thickness reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1111/edt.12231DOI Listing

Publication Analysis

Top Keywords

mouthguard sheet
16
thickness mouthguard
12
sheet material
12
sheet
10
thickness
8
mouthguard sheets
8
vacuum-pressure formation
8
sheet materials
8
olefin co-polymer
8
working model
8

Similar Publications

Background/aim: Sports mouthguard should be designed and fabricated adequately. The purpose was to propose a criterion for fabricating sports laminate mouthguard with adequate thickness for protect orofacial structures.

Materials And Methods: Ethylene vinyl acetate sheet (Sports Mouthguard) was fabricated using a pressure former.

View Article and Find Full Text PDF

Aim: The thickness of the mouthguard is a crucial factor in its protective ability for athletes. This study aimed to investigate the final thickness of double-layered sports mouthguards, which were fabricated using different methods before pressing the second layer.

Materials And Methods: Seven upper working models (n = 7 per group) were prepared for mouthguard fabrication.

View Article and Find Full Text PDF
Article Synopsis
  • The study compared custom-fit mouthguards made from conventional plaster versus 3D printed models, focusing on their thickness, fit, and shock-absorption qualities.
  • The 3D printed mouthguards demonstrated better adaptation to tooth surfaces, although both types maintained similar thickness and effectively reduced impact strain.
  • Results indicate that both types of mouthguards meet performance standards, with voids having no significant effect on their functionality.
View Article and Find Full Text PDF

There is a growing need for a mouthguard sheet material with higher shock absorption and dispersion capacity than those obtained by conventional materials. A five-layer mouthguard sheet material was previously developed using laminated ethylene vinyl acetate and polyolefin copolymer resin. In this study, the shock absorption capacity and dispersion capability of the new sheet material were investigated and compared with those of other materials.

View Article and Find Full Text PDF

Background/aim: The interaction between the ethylene-vinyl acetate (EVA) with distinct materials utilized for obtaining dental models can affect the performance of resulting mouthguards. This study attempted to evaluate the effect of different materials for conventional (dental stone) or 3D-printed (resin) models on EVA's physical and mechanical properties and surface characteristics.

Material And Methods: EVA sheets (Bioart) were laminated over four model types: GIV, conventional Type IV dental stone model (Zhermak); ReG, resin-reinforced Type IV dental stone model (Zero Stone); 3DnT, 3D resin printed model (Anycubic) without surface treatment; 3DT, 3D-printed model (Anycubic) with water-soluble gel (KY Jelly Lubricant, Johnson & Johnson) coating during post-curing process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!