Studies have implicated astrocytic dysfunction in Alzheimer's disease (AD). However, the role of astrocytes in the pathophysiology and treatment of the disease is poorly characterized. Here, we identified astrocytes as independent key factors involved in several Alzheimer-like phenotypes in an APP/PS1 mouse model, including amyloid pathology, altered neuronal and synaptic properties, and impaired cognition. In vitro astrocytes from APP/PS1 mice induced synaptotoxicity as well as reduced dendritic complexity and axonal branching of hippocampal neurons. These astrocytes produced high levels of soluble β-amyloid (Aβ) which could be significantly inhibited by fluoxetine (FLX) via activating serotonin 5-HT2 receptors. FLX could also protect hippocampal neurons against astrocyte-induced neuronal damage in vitro. In the same APP/PS1 mice, FLX inhibited activation of astrocytes, lowered Aβ products, ameliorated neurotoxicity, and improved behavioral performance. These findings may provide a basis for the clinical application of FLX in patients, and may also lay the groundwork for exploration of other novel astrocyte-based therapies of AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/glia.22926 | DOI Listing |
J Control Release
December 2024
Key Laboratory of Environmental Medicine Engineering of Ministry of Education, State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Public Health, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, PR China. Electronic address:
Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder. The vicious circle between amyloid-β peptide (Aβ) overgeneration and microglial dysfunction is an important pathological event that promotes AD progression. However, therapeutic strategies toward only Aβ or microglial modulation still have many problems.
View Article and Find Full Text PDFTransl Neurodegener
December 2024
Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, 88 Jiefang Road, Hangzhou, 310009, China.
Background: Alzheimer's disease (AD) is the most common form of neurodegenerative disorder, which is characterized by a decline in cognitive abilities. Genome-wide association and clinicopathological studies have demonstrated that the CD2-associated protein (CD2AP) gene is one of the most important genetic risk factors for AD. However, the precise mechanisms by which CD2AP is linked to AD pathogenesis remain unclear.
View Article and Find Full Text PDFCNS Neurosci Ther
December 2024
Institute of Biopharmaceutical Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Background: Hericium erinaceus mycelium and its constituents, erinacines A and S, have shown neuroprotective effects in APP/PS1 transgenic mice; however, the precise mechanisms by which they modulate microglial phenotypes remain unclear. Our study is the first to explore the effect of erinacines on microglia morphology and the underlying mechanisms using a novel primary mixed glia cell model and advanced bioinformatic tools. Furthermore, we emphasize the clinical relevance by evaluating erinacines in a metabolically stressed APP/PS1 mouse model, which more accurately reflects the complexities of human Alzheimer's disease (AD), where metabolic syndrome is a common comorbidity.
View Article and Find Full Text PDFBrain Sci
October 2024
Departamento Reproducción Animal, INIA-CSIC, 28040 Madrid, Spain.
Background/objectives: Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common.
View Article and Find Full Text PDFImmun Inflamm Dis
November 2024
Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China.
Background: The effectiveness of ultrasound stimulation in treating Alzheimer's disease (AD) has been reported in previous studies, but the underlying mechanisms remain unclear. This study investigated the effects of ultrasound stimulation on the proportion and function of microglia of different phenotypes, as well as on the levels of inflammatory factors. Additionally, it revealed the alterations in proteomic molecules in the mouse hippocampus following ultrasound stimulation treatment, aiming to uncover potential new molecular mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!