Alzheimer's disease (AD) is a severe neurodegenerative disease for which there is currently no effective treatment. This study investigated whether treatment with the herbal formula PM012 would improve the cognitive function and the pathological features of AD in 3xTg-AD mice. The cognitive function of 3xTg-AD mice was assessed using the Morris water maze test and positron-emission tomography (PET) with 18 F-2 fluoro-2-deoxy-D-glucose ([F-18] FDG) neuroimaging. The levels of the amyloid beta (Aβ) deposits in the hippocampus were evaluated by immunohistochemistry. Neurogenesis was assessed by quantitative labeling with the DNA marker bromodeoxyuridine (BrdU) and the newborn neuron marker doublecortin (DCX). PM012 treatment significantly ameliorated memory deficit in AD mice, as shown by shortened escape latencies and increased time spent in the target zone during probe tests. In addition, PM012 significantly decreased Aβ deposits, up-regulated the expression of brain-derived neurotrophic factor (BDNF), increased neurogenesis, and improved brain glucose metabolism in the 3xTg-AD mice. These results suggest that PM012 could be a promising treatment for AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-015-9458-x | DOI Listing |
Theranostics
January 2025
Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
Disrupted hippocampal functions and progressive neuronal loss represent significant challenges in the treatment of Alzheimer's disease (AD). How to achieve the improvement of pathological progression and effective neural regeneration to ameliorate the intracerebral dysfunctional environment and cognitive impairment is the goal of the current AD therapy. We examined the therapeutic potential of clinical-grade human derived dental pulp stem cells (hDPSCs) in cognitive function and neuropathology in AD.
View Article and Find Full Text PDFBrain Sci
November 2024
Mental Illness Research Education and Clinical Center (MIRECC), Department of Veteran Affairs, 3801 Miranda Ave, Palo Alto, CA 94304, USA.
Background/objectives: The biological basis for behavioral manifestations of Alzheimer's disease remains unclear. Emotional and behavioral alterations of Alzheimer's disease can result in substantial caregiver burden and lack effective management. This study expands upon previous work investigating behavioral alterations in mice with Alzheimer's disease and a potential treatment of increasing brain-derived neurotrophic factor (BDNF) using repetitive transcranial magnetic stimulation (rTMS).
View Article and Find Full Text PDFFront Aging Neurosci
December 2024
Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, United States.
Background: The 3xTg-AD transgenic mouse model of Alzheimer's disease (AD) is an important tool to investigate the relationship between development of pathological amyloid-β (Aβ) and tau, neuroinflammation, and cognitive impairments. Traditional behavioral tasks assessing aspects of learning and memory, such as mazes requiring spatial navigation, unfortunately suffer from several shortcomings, including the stress of human handling and not probing species-typical behavior. The automated IntelliCage system was developed to circumvent such issues by testing mice in a social environment while measuring multiple aspects of cognition.
View Article and Find Full Text PDFEur J Pharmacol
December 2024
Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P.R. China. Electronic address:
MicroRNA-222 (miR-222) plays a crucial role in neurodegeneration and is up-regulated in Alzheimer's disease (AD) patients. Andrographolide (Andro) has been reported to have anti-inflammatory and neuroprotective effects, showing potential for treating AD. The relationship between Andro's anti-AD mechanism and the regulation of miR-222 was discussed in this study.
View Article and Find Full Text PDFPhysiol Behav
December 2024
Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Deptment of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA; College of Agriculture, Food, and Natural Resources, Prairie View A&M University, Prairie View, TX 77446, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, GA, USA; Department of Orthopedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA. Electronic address:
Alzheimer's Disease (AD) is a debilitating neurocognitive disorder with an unclear underlying mechanism. Recent studies have implicated gut microbiota dysbiosis with the onset and progression of AD. The connection between gut microbiota and AD can significantly affect the prevention and treatment of AD patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!