In the present study, the adhesion of bacteriocin-producing probiotic strains of Lactobacillus plantarum onto extracellular matrix (ECM) proteins such as collagen and mucin and their potential to prevent pathogen invasion onto the ECM was ascertained. Fluorescence-based in vitro assays indicated that L. plantarum strains CRA21, CRA38 and CRA52 displayed considerable adhesion to ECM molecules, which was comparable to the probiotic Lactobacillus rhamnosus GG. Flow cytometry-based quantitative assessment of the adhesion potential suggested that L. plantarum CRA21 exhibited superior adhesion onto the ECM as compared with other lactic acid bacteria strains. Furthermore, fluorescence-based assays suggested that the highest inhibition of Staphylococcus aureus adhesion onto collagen and mucin by bacteriocin-producing L. plantarum strains was observed in the exclusion mode as compared with the competition and displacement modes. This observation was supported by the higher binding affinity (k(d)) for the ECM exhibited by the L. plantarum strains as compared with S. aureus. Interestingly, a crude plantaricin A extract from food isolates of L. plantarum displayed potent antibacterial activity on ECM-adhered S. aureus cells. It is envisaged that the L. plantarum isolates displaying bacteriocinogenic and ECM-adhering traits can perhaps be explored to develop safe antibacterial therapeutic agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/jmm.0.000181 | DOI Listing |
Food Technol Biotechnol
December 2024
Department of Food Engineering, Gumushane University, Baglarbasi Road, 29100 Gumushane, Turkey.
Research Background: Given the potential of microbial exopolysaccharides from lactic acid bacteria in various industrial processes, alternative sources for the isolation of lactic acid bacteria are highly topical. In this study, we used a traditional sourdough from einkorn ( L. ssp.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
Aim: This study aimed to investigate the antibacterial efficacy of probiotic-derived cell-free supernatants (CFS) encapsulated within nanostructured lipid carriers (NLCs) against multidrug-resistant and . Additionally, it aimed to identify specific bioactive compounds that contribute to the reported antibacterial properties by characterizing the metabolite substances present in the CFS using a metabolomic analysis technique.
Methods: Eight strains of lactic acid bacteria including (L22F and L25F), (P72N, BF9, BF 14, BYF 20 and BYF 26) and (BF 12) were selected as probiotic candidates.
Sci Rep
January 2025
Molecular Mycotoxicology Lab, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, 570 006, India.
Fifty-five lactic acid bacteria (LAB) were isolated from seven selected tropical fruits, with Solanum nigrum exhibiting the highest LAB prevalence and Couroupita guianenis and Musa fruits showing the lowest counts. Two strains isolated from Ficus racemosa demonstrated significant antifungal activity against Fusarium oxysporum. 16S rDNA sequencing identified these strains as Lactiplantibacillus plantarum MYSVCF3 and Lpb.
View Article and Find Full Text PDFPLoS One
January 2025
School of Biological Sciences, Seoul National University, Seoul, South Korea.
Early-life malnutrition adversely affects nearly all organ systems, resulting in multiple physiological adaptations, including growth restriction and muscle and bone loss. Although there is growing evidence that probiotics effectively improve systemic growth under malnourished conditions in different animal models, our knowledge of the beneficial effects of probiotics on various organs is limited. Here, we show that Lactobacillus plantarum strain WJL (LpWJL) can mitigate skeletal muscle and bone loss in protein-malnourished juvenile mice.
View Article and Find Full Text PDFBMC Microbiol
January 2025
School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
Background And Aims Of The Study: Fluctuations in environmental temperature and humidity significantly affect human physiology and disease manifestation. In the Lingnan region of China, high summer temperatures and humidity often cause symptoms like diminished appetite, sticky tongue coating, sticky stool, unsatisfactory defecation, lethargy, and joint heaviness. These are referred to as "Dampness Syndrome" in Traditional Chinese Medicine (TCM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!