Methods for staining tissues with Oil Red O and hematoxylin-eosin are classical histological techniques that are widely used to quantify atherosclerotic burden in mouse tissues because of their ease of use, reliability, and the large amount of information they provide. These stains can provide quantitative data about the impact of a genetic or environmental factor on atherosclerotic burden and on the initiation, progression, or regression of the disease, and can also be used to evaluate the efficacy of drugs designed to prevent or treat atherosclerosis. This chapter provides protocols for quantifying atherosclerotic burden in mouse aorta and aortic root, including methods for dissection, Oil Red O staining, hematoxylin-eosin staining, and image analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-2929-0_5 | DOI Listing |
Front Pharmacol
December 2024
School of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China.
Introduction: The aim of this study is to examine the physiological effects of emodin on intestinal microorganisms and the liver in the BALb/c mice.
Method And Results: Following an 8-week administration of emodin at doses of 25, 50, and 100 mg/kg/day,pathological analyses revealed that emodin significantly reduced the colon length, induced colonic crypt inflammation,diminished the colonic mucus layer,and decreased the fluorescence intensity of colonic tight junction proteins ZO-1 and Occludin. Concurrently, 16S rDNA gene sequencing corroborated that emodin altered the diversity and composition of the intestinal microbiota by increasing the to ratio.
Background: Vascular endothelial cell-derived exosomes are thought to mediate disease progression by regulating macrophage polarization. However, its mechanism in diabetes mellitus (DM)-related atherosclerosis (AS) progress is unclear.
Methods: High-glucose (HG) and oxLDL were used to induce human cardiac microvascular endothelial cells (HCMECs) to mimic DM-related AS model.
Sci Rep
January 2025
Geophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
The Red Sea remains a largely under-explored basin, with the Northern Egyptian Red Sea requiring further investigation due to limited borehole data, sparse case studies, and poor seismic quality. A petroleum system, regional structural cross-section, and geological block diagrams integrating onshore fieldwork from Gebel Duwi and offshore subsurface geology were utilized to assess the hydrocarbon potential of the Northern Egyptian Red Sea (NERS). The findings highlight that pre- and syn-rift organic-rich source units in the NERS could generate oil and gas, similar to the capped reservoirs of the Southern Gulf of Suez.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India.
: Pyroptosis, an inflammatory cell death, is involved in the progression of atherosclerosis. Pyroptosis in endothelial cells (ECs) and its underlying mechanisms in atherosclerosis are poorly understood. Here, we investigated the role of a caspase-4/5-NF-κB pathway in pyroptosis in palmitic acid (PA)-stimulated ECs and EVs as players in pyroptosis.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Beijing Institute of Radiation Medicine, Beijing 100859, China.
Plateau hyperuricemia is a common disease in the plateau area, and the incidence is much higher than that in the plain area. Dioscin (DIO) and its active metabolite Diosgenin (DG) exert therapeutic effects on hyperuricemia through oxidative stress and inflammation. In this study, DIO and its active metabolite DG were taken as the research objects to explore their therapeutic effects on high-altitude hyperuricemia in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!