Transcriptional over-expression of chloride intracellular channels 3 and 4 in malignant pleural mesothelioma.

Comput Biol Chem

Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa 41500, Greece; Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa 41500, Greece. Electronic address:

Published: December 2015

Background: Chloride Intracellular Channels (CLICs) are contributing to the regulation of multiple cellular functions. CLICs have been found over-expressed in several malignancies, and therefore they are currently considered as potential drug targets. The goal of our study was to assess the gene expression levels of the CLIC's 1-6 in malignant pleural mesothelioma (MPM) as compared to controls.

Methods: We used gene expression data from a publicly available microarray dataset comparing MPM versus healthy tissue in order to investigate the differential expression profile of CLIC 1-6. False discovery rates were calculated and the interactome of the significantly differentially expressed CLICs was constructed and Functional Enrichment Analysis for Gene Ontologies (FEAGO) was performed.

Results: In MPM, the gene expressions of CLIC3 and CLIC4 were significantly increased compared to controls (p=0.001 and p<0.001 respectively). A significant positive correlation between the gene expressions of CLIC3 and CLIC4 (p=0.0008 and Pearson's r=0.51) was found. Deming regression analysis provided an association equation between the CLIC3 and CLIC4 gene expressions: CLIC3=4.42CLIC4-10.07.

Conclusions: Our results indicate that CLIC3 and CLIC4 are over-expressed in human MPM. Moreover, their expressions correlate suggesting that they either share common gene expression inducers or that their products act synergistically. FAEGO showed that CLIC interactome might contribute to TGF beta signaling and water transport.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2015.09.012DOI Listing

Publication Analysis

Top Keywords

chloride intracellular
8
intracellular channels
8
malignant pleural
8
pleural mesothelioma
8
gene expression
8
transcriptional over-expression
4
over-expression chloride
4
channels malignant
4
mesothelioma background
4
background chloride
4

Similar Publications

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel whose dysfunction leads to intracellular accumulation of chloride ions, dehydration of cell surfaces, and subsequent damage to airway and ductal organs. Beyond its function as a chloride channel, interactions between CFTR, epithelium sodium channel, and solute carrier (SLC) transporter family membrane proteins and cytoplasmic proteins, including calmodulin and Na+/H+ exchanger regulatory factor-1 (NHERF-1), coregulate ion homeostasis. CFTR has also been observed to form mesoscale membrane clusters.

View Article and Find Full Text PDF

An efficient isoquinoline-fused benzimidazole-based "turn-on" fluorescence receptor 9,10-bis(2-phenylhydrazineyl)-7H-benzo[de]imidazo[2,1-a]isoquinolin-7-one OXPH(ANQ) and "turn-off" fluorescence receptor 9,10-bis((3-(1H-imidazol-1-yl)propyl)amino)-7H-benzo[de]imidazo[2,1-a]isoquinolin-7-one OXPID(ANQ) were prepared and characterized by various spectral techniques. The sensing behavior of receptors was demonstrated by UV-vis and fluorescence experiments, and naked-eye detection exhibited prominent visual emission color change toward Cu/Cl and Fe over other testing cations/anions in DMSO:water (9:1, ν/v) solution. The 1:1 binding stoichiometry was confirmed by Job's plot, FT-IR, mass spectral titration, and also DFT studies with target ions as evidence for the binding nature of OXPH(ANQ)/OXPID(ANQ) with Cu/Cl and Fe ions, respectively.

View Article and Find Full Text PDF

Ano5 deficiency disturbed bone formation by inducing osteoclast apoptosis in Gnathodiaphyseal dysplasia.

Exp Cell Res

March 2025

Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China. Electronic address:

Gnathodiaphyseal dysplasia (GDD) is a rare genetic syndrome characterized by cemento-ossifying fibroma lesions in the mandible and sclerosis of tubular bones. Currently, the clinical treatment of GDD is limited to surgical resection; therefore, novel treatment strategies developed through exploration of the related mechanisms are needed. Mutations in the TMEM16E/ANO5 gene are considered the main pathogenic factor of GDD, and the Ano5 knockout mouse model (Ano5) established previously, which presented GDD-like characteristics, exhibited decreased osteoclastogenesis.

View Article and Find Full Text PDF

Background: Acute myocardial infarction (AMI) is a deadly cardiovascular disease with no effective solution except for percutaneous coronary intervention and coronary artery bypass grafting. Inflammation and apoptosis of the injured myocardium after revascularization seriously affect the prognosis. Hydrogen possesses anti-inflammatory, anti-oxidative, and anti-apoptotic effects and may become a new treatment for AMI.

View Article and Find Full Text PDF

Background: Considering the efficacy of antimicrobial photodynamic therapy (PDT) in inactivating bacteria, this study reports that zinc hydroxide chloride nanosheets (ZHC-NSs) are useful for this purpose.

Materials & Methods: The characterization of ZHC-NSs was performed using microscopic and spectroscopic techniques. The irritation test, acute toxicity test, and genotoxicity test of ZHC-NSs were evaluated and their effects on human pulp fibroblast cells (HPFC) viability, intracellular reactive oxygen species (ROS) levels, and antibacterial activity of ZHC-NSs (1-8 mg ml) alone or in light conditions were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!