Modeling the Adsorption of Oxalate onto Montmorillonite.

Langmuir

Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada , Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain.

Published: November 2015

In this work, a multiscale modeling of the interaction of oxalate with clay mineral surfaces from macroscale thermodynamic equilibria simulations to atomistic calculations is presented. Previous results from macroscopic adsorption data of oxalate on montmorillonite in 0.01 M KNO3 media at 25 °C within the pH range from 2.5 to 9 have been used to develop a surface complexation model. The experimental adsorption edge data were fitted using the triple-layer model (TLM) with the aid of the FITEQL 4.0 computer program. Surface complexation of oxalate is described by two reactions: >AlOH + Ox(2-) + 2H(+) = >AlOxH + H2O (log K = 14.39) and >AlOH + Ox(2-) + H(+) = >AlOx(-) + H2O (log K = 10.39). The monodentate complex >AlOxH dominated adsorption below pH 4, and the bidentate complex >AlOx(-) was predominant at higher pH values. Both of the proposed inner-sphere oxalate species are qualitatively consistent with previously published diffuse reflectance FTIR spectroscopic results for oxalate on montmorillonite edge surface (Chem. Geol. 2014, 363, 283-292). Atomistic computational studies have been performed to understand the interactions at the molecular level between adsorbates and mineral surface, showing the atomic structures and IR frequency shifts of the adsorption complexes of oxalate with the edge surface of a periodic montmorillonite model.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.5b02776DOI Listing

Publication Analysis

Top Keywords

oxalate montmorillonite
12
surface complexation
8
>aloh ox2-
8
h2o log
8
edge surface
8
oxalate
7
surface
5
modeling adsorption
4
adsorption oxalate
4
montmorillonite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!