Human microvascular ECs from the neonatal foreskin of two donors purchased from one distributor were used in an angiogenesis assay under the same culture conditions. Different angiogenic potency was apparent in these two batches (ECang and ECnon-ang). During the cultivation period of three weeks, ECang ran through all stages of angiogenesis starting from proliferation to migration up to the formation of three-dimensional capillary-like structures. Despite of expression of endothelial markers, ECnon-ang showed excessive intracellular storage of lipids in form of multilamellar bodies and decreased angiogenic potency in contrast to its counterpart, ECang. Results indicate that lipid metabolism differs in ECang versus ECnon-ang. This study points up that these differences are based on the different donors and presents a novel and valuable model for the study of mechanisms of atherosclerosis in endothelial cells in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.3233/CH-152002DOI Listing

Publication Analysis

Top Keywords

human microvascular
8
endothelial cells
8
angiogenic potency
8
microvascular endothelial
4
cells displaying
4
displaying reduced
4
reduced angiogenesis
4
angiogenesis increased
4
increased uptake
4
uptake lipids
4

Similar Publications

Association Between HbA1c Levels and the Severity of Diabetic Retinopathy.

Cureus

December 2024

Department of Ophthalmology, College of Medicine, Qassim University, Kingdom of Saudi Arabia, Buraidah, SAU.

Background: Diabetic retinopathy (DR) is a significant microvascular complication of diabetes mellitus (DM), contributing to visual impairment and blindness worldwide. Understanding the factors associated with the severity of DR is crucial for effective prevention and management. This study aimed to explore the association between hemoglobin A1c (HbA1c) level and other parameters with different stages of DR.

View Article and Find Full Text PDF

Islet transplantation and more recently stem cell-derived islets were shown to successfully re-establish glycemic control in people with type 1 diabetes under immunosuppression. These results were achieved through intraportal infusion which leads to early graft losses and limits the capacity to contain and retrieve implanted cells in case of adverse events. Extra-hepatic sites and encapsulation devices have been developed to address these challenges and potentially create an immunoprotective or immune-privileged environment.

View Article and Find Full Text PDF

Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.

Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.

View Article and Find Full Text PDF

Characterizing SV40-hTERT Immortalized Human Lung Microvascular Endothelial Cells as Model System for Mechanical Stretch-Induced Lung Injury.

Int J Mol Sci

January 2025

Clinical Division of General Anaesthesia and Intensive Care Medicine, Department of Anesthesia, Genera Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria.

Drug development for human disease relies on preclinical model systems such as human cell cultures and animal experiments before therapeutic treatments can ultimately be tested on humans in clinical studies. We here describe the generation of a novel human cell line (HLMVEC/SVTERT289) that we generated by transfection of microvascular endothelial cells from healthy donor lung tissue with the catalytic domain of telomerase and the SV40 large T/small t-antigen. These cells exhibited satisfactory growth characteristics and largely maintained their native characteristics, including morphology, cell surface marker expression, angiogenic potential and the protein composition of secreted extracellular vesicles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!