Minimally invasive plate osteosynthesis(MIPO) has been considered as an alternative for fracture treatment. Previous study has demonstrated that MIPO technique has the advantage of less soft tissue injury compared with open reduction internal fixation (ORIF). However, the comparison of callus formation and mineralization between two plate osteosynthesis methods remains unknown. In this experiment, ulna fracture model was established in 42 beagle dogs. The fractures underwent reduction and internal fixation with MIPO or ORIF. Sequential fluorescent labeling and radiographs were applied to determine new callus formation and mineralization in two groups after operation. At 4, 8 and 12 weeks postoperatively, the animals were selected to be sacrificed and the ulna specimens were analyzed by Micro-CT. The sections were also treated with Masson staining for histological evaluation. More callus formation was observed in MIPO group in early stage of fracture healing. The fracture union rate has no significant difference between two groups. The results indicate that excessive soft tissue stripping may impact early callus formation. As MIPO technique can effectively reduce soft tissue injury with little incision, it is considered to be a promising alternative for fracture fixation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596811PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0140037PLOS

Publication Analysis

Top Keywords

callus formation
20
formation mineralization
12
reduction internal
12
internal fixation
12
soft tissue
12
fracture fixation
8
minimally invasive
8
invasive plate
8
plate osteosynthesis
8
open reduction
8

Similar Publications

Identification and functional characterization of AsWRKY9, a WRKY transcription factor modulating alliin biosynthesis in garlic (Allium sativum L.).

BMC Biol

January 2025

The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.

Background: The variations in alliin content are a crucial criterion for evaluating garlic quality and is the sole precursor for allicin biosynthesis, which is significant for the growth, development, and stress response of garlic. WRKY transcription factors are essential for enhancing stress resistance by regulating the synthesis of plant secondary metabolites. However, the molecular mechanisms regulating alliin biosynthesis remain unexplored.

View Article and Find Full Text PDF

Methylglyoxal compromises callus mineralization and impairs fracture healing through suppression of osteoblast terminal differentiation.

Biochem Biophys Res Commun

January 2025

Department of Pharmacology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan; Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan. Electronic address:

Impaired fracture healing in diabetic patients leads to prolonged morbidity and increased healthcare costs. Methylglyoxal (MG), a reactive metabolite elevated in diabetes, is implicated in various complications, but its direct impact on bone healing remains unclear. Here, using a non-diabetic murine tibial fracture model, we demonstrate that MG directly impairs fracture healing.

View Article and Find Full Text PDF

This study seeks to improve the biomass extractability of Sorghum bicolor by targeting a critical enzyme, 4CL, through metabolic engineering of the lignin biosynthetic pathway at the post-transcriptional level. Sorghum bicolor L., a significant forage crop, offers a potential source of carbohydrate components for biofuel production.

View Article and Find Full Text PDF

Purpose Of The Study: The preclinical study aimed to compare the healing of segmental bone defects treated with biodegradable hyaluronic acid and tricalcium phosphate-based hydrogel with the established autologous spongioplasty. Another aim was to evaluate the hydrogel as a scaffold for osteoinductive growth factor of bone morphogenetic protein-2 (BMP-2) and stem cells.

Material And Methods: The study was conducted in an in vivo animal model.

View Article and Find Full Text PDF

Transcriptome and Gene Expression Analysis Revealed : A Potential New Marker for Somatic Embryogenesis in Common Centaury ( Rafn.).

Int J Mol Sci

December 2024

Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia.

Rafn. is a medicinal plant used as a model for studying plant developmental processes due to its developmental plasticity and ease of manipulation in vitro. Identifying the genes involved in its organogenesis and somatic embryogenesis (SE) is the first step toward unraveling the molecular mechanisms underlying its morphogenic plasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!