Constitutive stable DNA replication in Escherichia coli cells lacking type 1A topoisomerase activity.

DNA Repair (Amst)

Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, P. Québec H3C 3J7, Canada. Electronic address:

Published: November 2015

Type 1A topoisomerases (topos) are ubiquitous enzymes involved in supercoiling regulation and in the maintenance of genome stability. Escherichia coli possesses two type 1A enzymes, topo I (topA) and topo III (topB). Cells lacking both enzymes form very long filaments and have severe chromosome segregation and growth defects. We previously found that RNase HI overproduction or a dnaT::aph mutation could significantly correct these phenotypes. This leads us to hypothesize that they were related to unregulated replication originating from R-loops, i.e. constitutive stable DNA replication (cSDR). cSDR, first observed in rnhA (RNase HI) mutants, is characterized by its persistence for several hours following protein synthesis inhibition and by its requirement for primosome components, including DnaT. Here, to visualize and measure cSDR, the incorporation of the nucleotide analog ethynyl deoxyuridine (EdU) during replication in E. coli cells pre-treated with protein synthesis inhibitors, was revealed by "click" labeling with Alexa Fluor(®) 488 in fixed cells, and flow cytometry analysis. cSDR was detected in rnhA mutants, but not in wild-type strains, and the number of cells undergoing cSDR was significantly reduced by the introduction of the dnaT::aph mutation. cSDR was also found in topA, double topA topB but not in topB null cells. This result is consistent with the established function of topo I in the inhibition of R-loop formation. Moreover, our finding that topB rnhA mutants are perfectly viable demonstrates that topo III is not uniquely required during cSDR. Thus, either topo I or III can provide the type 1A topo activity that is specifically required during cSDR to allow chromosome segregation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dnarep.2015.08.004DOI Listing

Publication Analysis

Top Keywords

topo iii
12
constitutive stable
8
stable dna
8
dna replication
8
escherichia coli
8
coli cells
8
cells lacking
8
chromosome segregation
8
dnataph mutation
8
csdr
8

Similar Publications

Synthesis, Structural Modification, and Antismall Cell Lung Cancer Activity of 3-Arylisoquinolines with Dual Inhibitory Activity on Topoisomerase I and II.

J Med Chem

January 2025

Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.

To overcome the compensatory effect between Topo I and II, one of the reasons accounting for the resistance of SCLC patients, we are pioneering the use of 3-arylisoquinolines to develop dual inhibitors of Topo I/II for the management of SCLC. A total of 46 new compounds were synthesized. Compounds (IC = 1.

View Article and Find Full Text PDF

Structural insights into human topoisomerase 3β DNA and RNA catalysis and nucleic acid gate dynamics.

Nat Commun

January 2025

Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.

Type IA topoisomerases (TopoIAs) are present in all living organisms. They resolve DNA/RNA catenanes, knots and supercoils by breaking and rejoining single-stranded DNA/RNA segments and allowing the passage of another nucleic acid segment through the break. Topoisomerase III-β (TOP3B), the only RNA topoisomerase in metazoans, promotes R-loop disassembly and translation of mRNAs.

View Article and Find Full Text PDF

A series of fluoroquinolone analogs (II, III) derived from Ciprofloxacin hydrazide were designed, and synthesized. The NCI-60 Human Tumor Cell Line Screening assay indicated that compounds II, III, and III are the most potent among the series and were further selected for five-dose evaluation, where they exhibited potent cytotoxicity with mean GI values of 3.30, 2.

View Article and Find Full Text PDF

The synthesis of phosphorous indenoquinolines and their biological evaluation as topoisomerase 1 (TOP1) inhibitors and antiproliferative agents were performed. First, the preparation of new hybrid 5-indeno[2,1-]quinolines with a phosphine oxide group was performed by a two-step Povarov-type [4+2]-cycloaddition reaction between the corresponding phosphorated aldimines with indene in the presence of BF·EtO. Subsequent oxidation of the methylene present in the structure resulted in the corresponding indeno[2,1-]quinolin-7-one phosphine oxides .

View Article and Find Full Text PDF

Oleanolic Acid Modulates DNA Damage Response to Camptothecin Increasing Cancer Cell Death.

Int J Mol Sci

December 2024

Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.

Targeting DNA damage response (DDR) pathways represents one of the principal approaches in cancer therapy. However, defects in DDR mechanisms, exhibited by various tumors, can also promote tumor progression and resistance to therapy, negatively impacting patient survival. Therefore, identifying new molecules from natural extracts could provide a powerful source of novel compounds for cancer treatment strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!