Measurements of extremely low frequency (ELF) magnetic fields were conducted in the environment of commercial laboratory equipment in order to evaluate the possible co-exposure during the experimental processes on cell cultures. Three types of device were evaluated: a cell culture CO2 incubator, a thermostatic water bath and a laboratory shaker table. These devices usually have electric motors, heating wires and electronic control systems, therefore may expose the cell cultures to undesirable ELF stray magnetic fields. Spatial distributions of magnetic field time domain signal waveform and frequency spectral analysis (FFT) were processed. Long- and short-term variation of stray magnetic field was also evaluated under normal use of investigated laboratory devices. The results show that the equipment under test may add a considerable ELF magnetic field to the ambient environmental magnetic field or to the intentional exposure to ELF, RF or other physical/chemical agents. The maximum stray magnetic fields were higher than 3 µT, 20 µT and 75 µT in the CO2 incubator, in water bath and on the laboratory shaker table, respectively, with high variation of spatial distribution and time domain. Our investigation emphasizes possible confounding factors conducting cell culture studies related to low-level ELF-EMF exposure due to the existing stray magnetic fields in the ambient environment of laboratory equipment.

Download full-text PDF

Source
http://dx.doi.org/10.3109/15368378.2015.1076440DOI Listing

Publication Analysis

Top Keywords

stray magnetic
20
magnetic fields
20
magnetic field
16
laboratory equipment
12
cell cultures
12
magnetic
9
extremely low
8
low frequency
8
frequency elf
8
elf stray
8

Similar Publications

Field-dependent relaxation profiles of biomolecular systems.

Phys Chem Chem Phys

January 2025

Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.

The function of biomolecular systems, including biological macromolecules, often crucially depends on their dynamics. Nuclear magnetic resonance (NMR) is one of the most informative methods used to study biomolecules and their internal mobility, with atomic resolution, in near-physiological conditions. NMR relaxation profiles, obtained from the field dependence of the nuclear relaxation rates, in particular, offer the possibility to probe dynamic processes over a wide range of time scales.

View Article and Find Full Text PDF

Investigating skyrmion stability and core polarity reversal in NdMnGe.

Sci Rep

January 2025

Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.

We present a study on nanoscale skyrmionic spin textures in [Formula: see text], a rare-earth complex noncollinear ferromagnet. We confirm, using X-ray microscopy, that [Formula: see text] can host lattices of metastable skyrmion bubbles at room temperature in the absence of a magnetic field, after applying a suitable field cooling protocol. The skyrmion bubbles are robust against temperature changes from room temperature to 330 K.

View Article and Find Full Text PDF

Half-Metallic Antiferromagnetic 2D Nonlayered CrSe Nanosheets.

ACS Nano

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.

Half-metallic magnetism, characterized by metallic behavior in one spin direction and semiconducting or insulating behavior in the opposite spin direction, is an intriguing and highly useful physical property for advanced spintronics because it allows for the complete realization of 100% spin-polarized current. Particularly, half-metallic antiferromagnetism is recognized as an excellent candidate for the development of highly efficient spintronic devices due to its zero net magnetic moment combined with 100% spin polarization, which results in lower energy losses and eliminates stray magnetic fields compared to half-metallic ferromagnets. However, the synthesis and characterization of half-metallic antiferromagnets have not been reported until now as the theoretically proposed materials require a delicate and challenging approach to fabricate such complex compounds.

View Article and Find Full Text PDF

Antiferromagnetic materials offer potential for spintronic applications due to their resilience to magnetic field perturbations and lack of stray fields. Achieving exchange bias in these materials is crucial for certain applications; however, discovering such materials remains challenging due to their compensated spin structure. The quest for antiferromagnetic materials with exchange bias became a reality through our experimental study and theoretical simulation on and .

View Article and Find Full Text PDF
Article Synopsis
  • The Lunar Environment heliospheric X-ray Imager (LEXI) is designed to capture x-ray images from solar wind interactions in Earth's magnetosheath, helping researchers understand energy transfer into Earth's magnetosphere.
  • As part of a lunar lander mission landing in Mare Crisium, LEXI features a unique array of 48 neodymium magnets to protect against interference from charged particles while minimizing stray magnetic fields.
  • A Runge-Kutta-based simulation model shows that LEXI's deflector array and other particle suppression methods effectively limit proton and electron contamination, ensuring the success of its imaging capabilities and offering insights for similar instruments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!