AI Article Synopsis

  • The Cytochrome P450 (CYP) system plays a crucial role in metabolizing drugs and other substances in the human body, being responsible for about 90% of interactions with xenobiotics.
  • The paper introduces a three-compartment model to analyze drug metabolism in Hepatic Reductase Null (HRN) mice, developed to study the impact of CYP system inactivation.
  • Comparing this three-compartment model to a traditional two-compartment model revealed that HRN mice exhibit a significantly lower metabolism rate for drugs like Gefitinib, Midazolam, and Thalidomide.

Article Abstract

The Cytochrome P450 (CYP) system is involved in 90% of the human body's interactions with xenobiotics and due to this, it has become an area of avid research including the creation of transgenic mice. This paper proposes a three-compartment model which is used to explain the drug metabolism in the Hepatic Reductase Null (HRN) mouse developed by the University of Dundee (Henderson, C. J., Otto, D. M. E., Carrie, D., Magnuson, M. A., McLaren, A. W., Rosewell, I. and Wolf, C. R. (2003) Inactivation of the hepatic cytochrome p450 system by conditional deletion of hepatic cytochrome p450 reductase. J. Biol. Chem. , 13480-13486). The model is compared with a two-compartment model using experimental data from studies using wild-type and HRN mice. This comparison allowed for metabolic differences between the two types of mice to be isolated. The three sets of drug data (Gefitinib, Midazolam and Thalidomide) showed that the transgenic mouse has a decreased rate of metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1093/imammb/dqv029DOI Listing

Publication Analysis

Top Keywords

cytochrome p450
12
three-compartment model
8
metabolic differences
8
hepatic reductase
8
reductase null
8
hepatic cytochrome
8
usage three-compartment
4
model
4
model investigate
4
investigate metabolic
4

Similar Publications

The frequency of drug-induced liver injury (DILI) in clinical trials remains a challenge for drug developers despite advances in human hepatotoxicity models and improvements in reducing liver-related attrition in preclinical species. TAK-994, an oral orexin receptor 2 agonist, was withdrawn from phase II clinical trials due to the appearance of severe DILI. Here, we investigate the likely mechanism of TAK-994 DILI in hepatic cell culture systems examined cytotoxicity, mitochondrial toxicity, impact on drug transporter proteins, and covalent binding.

View Article and Find Full Text PDF

Background: Polyunsaturated fatty acids are metabolized by cytochrome P450 (CYP450) into anti-inflammatory, pro-resolving epoxides, which are rapidly converted to inactive and cytotoxic diols by soluble epoxide hydrolase (sEH). Increased CYP450-sEH metabolites are associated with worse cognition in type 2 diabetes mellitus (T2DM), and greater white matter hyperintensities (WMH) in patients with stroke. We examined whether the relationship between linoleic acid (LA)-derived CYP450-sEH metabolites (oxylipins) and small vessel disease (SVD) markers differ across diabetes status.

View Article and Find Full Text PDF

Background: Aging and the decline in sex steroid hormone (e.g., estrogen) are associated with a potential loss of its neuroprotective effects on the female brain.

View Article and Find Full Text PDF

Background: Alzheimer's Disease ("AD") presents a significant global health burden, often requiring medication management of comorbidities, some of which are metabolized by the polymorphic enzyme CYP2C9. We investigated the impact of CYP2C9 polymorphism on the reduction of Neuropsychiatric Inventory (NPI-12) scores following administration of IGC-AD1, comprising THC and melatonin, in AD patients.

Method: Thirteen Puerto Rican AD patients (mean age: 80.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) affects millions of Americans, with potential future increases without breakthroughs in treatment. IGC-AD1, a novel formulation comprising of delta-9 tetrahydrocannabinol ("THC") and melatonin, is being studied in AD-associated agitation. THC is predominantly metabolized by cytochrome P450 and specifically by CYP2C9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!