Spreading the word: non-autonomous effects of apoptosis during development, regeneration and disease.

Development

Strang Laboratory of Apoptosis and Cancer Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA

Published: October 2015

Apoptosis, in contrast to other forms of cell death such as necrosis, was originally regarded as a 'silent' mechanism of cell elimination designed to degrade the contents of doomed cells. However, during the past decade it has become clear that apoptotic cells can produce diverse signals that have a profound impact on neighboring cells and tissues. For example, apoptotic cells can release factors that influence the proliferation and survival of adjacent tissues. Apoptosis can also affect tissue movement and morphogenesis by modifying tissue tension in surrounding cells. As we review here, these findings reveal unexpected roles for apoptosis in tissue remodeling during development, as well as in regeneration and cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631760PMC
http://dx.doi.org/10.1242/dev.127878DOI Listing

Publication Analysis

Top Keywords

apoptotic cells
8
cells
5
spreading word
4
word non-autonomous
4
non-autonomous effects
4
apoptosis
4
effects apoptosis
4
apoptosis development
4
development regeneration
4
regeneration disease
4

Similar Publications

Sperm motility is the prime functional attribute for semen quality and fertility of the bull. However, the bull's age directly affects the semen quality, and the bull's fertility and productive life decline with age. Even though research on age has been conducted in the past, it is still unclear how old a bull should be maintained at artificial insemination centers.

View Article and Find Full Text PDF

This comprehensive review explores the biological functions of seed proteins and peptides, highlighting their significant potential for health and therapeutic applications. This review delves into the mechanisms through which perilla peptides combat oxidative stress and protect cells from oxidative damage, encompassing free radical scavenging, metal chelating, in vivo antioxidant, and cytoprotective activities. Perilla peptides exhibit robust anti-aging properties by activating the Nrf2 pathway, enhancing cellular antioxidant capacity, and supporting skin health through the promotion of keratinocyte growth, maintenance of collagen integrity, and reduction in senescent cells.

View Article and Find Full Text PDF

Plant secondary metabolites (PSMs) are a diverse group of bioactive compounds, including flavonoids, polyphenols, saponins, and terpenoids, which have been recognised for their critical role in modulating cellular functions. This review provides a comprehensive analysis of the effects of PSMs on mitochondrial health, with particular emphasis on their therapeutic potential. Emerging evidence shows that these metabolites improve mitochondrial function by reducing oxidative stress, promoting mitochondrial biogenesis, and regulating key processes such as apoptosis and mitophagy.

View Article and Find Full Text PDF

In this manuscript, the effects of two extracts from were tested: (a) an extract titrated to 49.7% of andrographolide and obtained from leaves of the plant: (b) the pure andrographolide titrated to 99%. The extracts were dissolved in 1-butanol and tested on tumor lines (MCF7 and SH-SY5Y) and the non-tumor line (Huvec) to understand the effects on cell proliferation.

View Article and Find Full Text PDF

The aim of this study was to elucidate the impact of porcine pancreatic enzymes (Creon pancrelipase) in comparison to microbial-derived alpha amylase (MD amylase) on the small intestine wall structure, mucosal glycogen accumulation, and enterocyte turnover. The impact of enzyme supplementation on the small intestine was explored in 18 pigs with surgically induced exocrine pancreatic insufficiency (EPI). Four healthy pigs served as the control group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!