Prevention of abdominal aortic aneurysm progression by targeted inhibition of matrix metalloproteinase activity with batimastat-loaded nanoparticles.

Circ Res

From the Department of Bioengineering, Clemson University, SC (N.N., P.N.-G., A.S., A.C., P.G., N.R.V.); Department of Biomedical Engineering, Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine (A.S.); and Division of Vascular Surgery, Greenville Health System, SC (C.G.C., B.H.G.).

Published: November 2015

Rationale: Matrix metalloproteinases (MMPs)-mediated extracellular matrix destruction is the major cause of development and progression of abdominal aortic aneurysms. Systemic treatments of MMP inhibitors have shown effectiveness in animal models, but it did not translate to clinical success either because of low doses used or systemic side effects of MMP inhibitors. We propose a targeted nanoparticle (NP)-based delivery of MMP inhibitor at low doses to the abdominal aortic aneurysms site. Such therapy will be an attractive option for preventing expansion of aneurysms in patients without systemic side effects.

Objective: Our previous study showed that poly(d,l-lactide) NPs conjugated with an antielastin antibody could be targeted to the site of an aneurysm in a rat model of abdominal aortic aneurysms. In the study reported here, we tested whether such targeted NPs could deliver the MMP inhibitor batimastat (BB-94) to the site of an aneurysm and prevent aneurysmal growth.

Methods And Results: Poly(d,l-lactide) NPs were loaded with BB-94 and conjugated with an elastin antibody. Intravenous injections of elastin antibody-conjugated BB-94-loaded NPs targeted the site of aneurysms and delivered BB-94 in a calcium chloride injury-induced abdominal aortic aneurysms in rats. Such targeted delivery inhibited MMP activity, elastin degradation, calcification, and aneurysmal development in the aorta (269% expansion in control versus 40% elastin antibody-conjugated BB-94-loaded NPs) at a low dose of BB-94. The systemic administration of BB-94 alone at the same dose was ineffective in producing MMP inhibition.

Conclusions: Targeted delivery of MMP inhibitors using NPs may be an attractive strategy to inhibit aneurysmal progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4636940PMC
http://dx.doi.org/10.1161/CIRCRESAHA.115.307207DOI Listing

Publication Analysis

Top Keywords

abdominal aortic
20
aortic aneurysms
16
mmp inhibitors
12
low doses
8
systemic side
8
delivery mmp
8
mmp inhibitor
8
polydl-lactide nps
8
targeted site
8
site aneurysm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!