Position-specific isotope effects (PSIEs) have been measured by isotope ratio monitoring (13)C nuclear magnetic resonance spectrometry during the evaporation of 10 liquids of different polarities under 4 evaporation modes (passive evaporation, air-vented evaporation, low pressure evaporation, distillation). The observed effects are used to assess the validity of the Craig-Gordon isotope model for organic liquids. For seven liquids the overall isotope effect (IE) includes a vapor-liquid contribution that is strongly position-specific in polar compounds but less so in apolar compounds and a diffusive IE that is not position-specific, except in the alcohols, ethanol and propan-1-ol. The diffusive IE is diminished under forced evaporation. The position-specific isotope pattern created by liquid-vapor IEs is manifest in five liquids, which have an air-side limitation for volatilization. For the alcohols, undefined processes in the liquid phase create additional PSIEs. Three other liquids with limitations on the liquid side have a lower, highly position-specific, bulk diffusive IE. It is concluded that evaporation of organic pollutants creates unique position-specific isotope patterns that may be used to assess the progress of remediation or natural attenuation of pollution and that the Craig-Gordon isotope model is valid for the volatilization of nonpolar organic liquids with air-side limitation of the volatilization rate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.5b03280DOI Listing

Publication Analysis

Top Keywords

organic liquids
12
position-specific isotope
12
evaporation
8
evaporation organic
8
isotope
8
craig-gordon isotope
8
isotope model
8
liquids air-side
8
air-side limitation
8
limitation volatilization
8

Similar Publications

In situ growth of ZIF-8 nanoparticles on pure chitosan nanofibrous membranes for efficient antimicrobial wound dressings.

Int J Biol Macromol

January 2025

Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address:

Bacterial infections and excessive accumulation of wound exudates remain the main obstacles and clinical challenges to the healing of chronic cutaneous wounds. Conventional dressings are commonly used medical materials for acute wound care, but they do not possess the bacterial infection resistance required for chronic wound treatment. Herein, we prepared pure chitosan nanofibrous membranes (C) by electrospinning with poly(ethylene oxide) (PEO) as a sacrificial additive and then loaded with zinc-based metal-organic framework (MOF) as a novel antimicrobial wound dressing.

View Article and Find Full Text PDF

The development of stable biopharmaceutical formulations, such as monoclonal antibodies, poses a great challenge in the pharmaceutical industry. This study investigated the stabilizing effect of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) in liquid and solid formulations of infliximab during processing and storage. The solid formulation was produced by a scaled-up high-speed electrospinning method, resulting in a product suitable for reconstitution with excellent dissolution properties.

View Article and Find Full Text PDF

This study aimed to determine the chromatographic retention and dissociation/protonation constant (pK) values of lapatinib and tamoxifen, key drugs used in metastatic breast cancer treatment, at 37°C using both conventional and green high-performance liquid chromatography (HPLC) methods. Qualitative analysis was conducted on an XTerra C18 column (250 ×4.6 mm I.

View Article and Find Full Text PDF

The nonthermal destruction of aqueous film-forming foam (AFFF) stockpiles, one of the major culprits responsible for water and soil contamination by per- and polyfluoroalkyl substances (PFAS), is extremely challenging because of the coexistence of mixed recalcitrant PFAS and complicated organic matrices at extremely high concentrations. To date, the complete defluorination of undiluted AFFF at ambient conditions has not been demonstrated. This study reports a novel piezoelectric ball milling approach for treating AFFF with a total organic fluorine concentration of 9080 mg/L and total organic carbon of 234 g/L.

View Article and Find Full Text PDF

Quantifying changes in the properties of smoke aerosols under varying conditions is important for understanding the health and environmental impacts of exposure to smoke. Smoke composition, aerosol liquid water content, effective density (ρ), and other properties can change significantly as smoke travels through areas under different ambient conditions and over time. During this study, we measured changes in smoke composition and physical properties due to oxidative aging and exposure to humidity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!