In this chapter we review the literature with respect to what is known about how Escherichia coli colonizesthe mammalian intestine. We begin with a brief discussion of the mammalian large intestine, the major site that commensal strains of E. coli colonize. Next, evidence is discussed showing that, in order to colonize, E. coli must be able to penetrate and grow in the mucus layer of the large intestine. This is followed by discussions of colonization resistance, i.e., factors that are involved in the ability of a complete microbiota (microflora) to resist colonization by an invading bacterium, the advantages and disadvantages of the in vivo colonization models used in colonization research, the initiation and maintenance stages of E. coli colonization, and the rate of E. coli growth in the intestine. The next two sections of the chapter discuss the role of motility in colonization and how adhesion to mucosal receptors aids or inhibits penetration of the intestinal mucus layer and thereby either promotes or prevents E. coli colonization. Finally, the contribution of nutrition to the ability of E. coli to colonize is discussed based on the surprising finding that different nutrients are used by E. coli MG1655, a commensal strain, and by E. coli EDL933, an enterohemorrhagic strain, to colonize the intestine.

Download full-text PDF

Source
http://dx.doi.org/10.1128/ecosalplus.8.3.1.2DOI Listing

Publication Analysis

Top Keywords

coli
10
escherichia coli
8
mammalian intestine
8
large intestine
8
coli colonize
8
mucus layer
8
coli colonization
8
colonization
7
intestine
6
life commensal
4

Similar Publications

The Hsp100 family of protein disaggregases play important roles in maintaining protein homeostasis in cells. E. coli ClpB is an Hsp100 protein that solubilizes protein aggregates.

View Article and Find Full Text PDF

Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.

View Article and Find Full Text PDF

Magnolol (MG) and honokiol (HK) are bioactive compounds extracted from and trees with significant pharmacological properties, including antioxidant and antibacterial activity. However, their poor water solubility and low bioavailability limit the therapeutic potential. To address these limitations, this study aims to develop MG and HK formulations by co-electrospinning using custom-synthesized β-cyclodextrin-oligolactide (β-CDLA) derivatives.

View Article and Find Full Text PDF

Traumatic hemorrhage and infection are major causes of mortality in wounds caused by battlefield injuries, hospital procedures, and traffic accidents. Developing a multifunctional nano-drug capable of simultaneously controlling bleeding, preventing infection, and promoting wound healing is critical. This study aimed to design and evaluate a nanoparticle-based solution to address these challenges effectively.

View Article and Find Full Text PDF

Antimicrobial Activity of UV-Activated and Cysteamine-Grafted Polymer Foils Against Bacteria and Algae.

Polymers (Basel)

January 2025

Centre for Nanomaterials and Biotechnology, Faculty of Science, University of Jan Evangelista Purkyně, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic.

Surface modification of various polymer foils was achieved by UV activation and chemical grafting with cysteamine to improve surface properties and antimicrobial efficacy. UVC activation at 254 nm led to changes in surface wettability and charge density, which allowed the introduction of amino and thiol functional groups by cysteamine grafting. X-ray photoelectron spectroscopy (XPS) confirmed increased nitrogen and sulfur content on the modified surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!