Adsorption of Anionic or Cationic Surfactants in Polyanionic Brushes and Its Effect on Brush Swelling and Fouling Resistance during Emulsion Filtration.

Langmuir

Department of Chemistry and ‡Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan 48824, United States.

Published: November 2015

Atom transfer radical polymerization of ionic monomers from membrane surfaces yields polyelectrolyte brushes that swell in water and repel oil droplets to resist fouling during filtration of oil-in-water emulsions. However, surfactant adsorption to polyelectrolyte brushes may overcome this fouling resistance. This work examines adsorption of cationic and anionic surfactants in polyanionic brushes and the effect of these surfactants on emulsion filtration. In situ ellipsometry with films on flat surfaces shows that brushes composed of poly(3-sulfopropyl methacrylate salts) (pSPMK) swell 280% in water and do not adsorb sodium dodecyl sulfate (SDS). pSPMK-modified microfiltration membranes reject >99.9% of the oil from SDS-stabilized submicron emulsions, and the specific flux through these modified membranes is comparable to that through NF270 nanofiltration membranes. Moreover, the brush-modified membranes show no decline in flux over a 12 h filtration, whereas the flux through NF270 membranes decreases by 98.7%. In contrast, pSPMK brushes adsorb large quantities of cetyltrimethylammonium bromide (CTAB), and at low chain densities the brushes collapse in the presence of this cationic surfactant. Filtration of CTAB-stabilized emulsions through pSPMK-modified membranes gives minimal oil rejection, presumably due to the brush collapse. Thus, the fouling resistance of polyelectrolyte brush-modified membranes clearly depends on the surfactant composition in a particular emulsion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.5b01938DOI Listing

Publication Analysis

Top Keywords

fouling resistance
12
surfactants polyanionic
8
polyanionic brushes
8
emulsion filtration
8
polyelectrolyte brushes
8
brush-modified membranes
8
brushes
7
membranes
7
filtration
5
adsorption anionic
4

Similar Publications

The efficiency of ultrafiltration (UF) of acidified skim milk (SM) is impaired by protein aggregation and mineral scaling. The aim of this study is to assess the potential of acidification by electrodialysis with bipolar membranes (EDBM), in comparison with citric acid (CA), prior to the UF process on filtration performance, fouling and composition of the protein concentrates. Electro-acidification, facilitated by a water-splitting reaction, decreased the pH of milk to ∼ 5.

View Article and Find Full Text PDF

Computational fluid particle dynamics modeling of tangential flow filtration in perfusion cell culture.

Bioprocess Biosyst Eng

January 2025

Cell Culture Development, Biogen, 5000 Davis Drive, Research Triangle Park, NC, 27709, USA.

Membrane fouling is a common and complex challenge with cell culture perfusion process in biopharmaceutical manufacturing that can have detrimental effects on the process performance. In this study, we evaluated a method to calculate the hollow fiber membrane resistance at different time points for water and supernatant. In addition, the number of subvisible particles of < 200 nm.

View Article and Find Full Text PDF

Concurrent effects and dynamic wetting abilities of nanometals anchored redox-active Janus nanoarchitectures on cotton fabric for sustainable catalysis and disinfection.

Int J Biol Macromol

December 2024

Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China. Electronic address:

Article Synopsis
  • Designed a new type of catalyst using a unique Lous-leaf-inspired nanoarchitecture that prevents contamination and improves efficiency in disinfection processes.
  • Utilized hydrophilic polydopamine to help create a special coating on cotton fabric that interacts well with contaminants and boosts antibacterial action, all without needing extra chemicals.
  • Achieved over 99% antibacterial effectiveness against E. coli even after multiple washes, demonstrating strong resistance and the ability to tackle common challenges in catalytic reactions.
View Article and Find Full Text PDF

Mitigation of irreversible membrane biofouling by CNTs-PVDF conductive composite membrane.

Environ Res

December 2024

School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, PR China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China. Electronic address:

Biofouling has been one of the major challenges impacting the long-term stable operation of ultrafiltration processes. Irreversible biofouling is considerably more harmful than reversible biofouling. Conductive membrane, as a new technology to effectively mitigate membrane fouling, lack research of controlling irreversible biofouling.

View Article and Find Full Text PDF

Architecting highly hydratable and permeable dense Janus membrane for rapid and robust membrane distillation desalination.

Water Res

December 2024

School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, Shanghai, PR China. Electronic address:

Dense Janus membranes (JMs) are potential candidates in hypersaline wastewater treatments for membrane distillation (MD). However, dense surface layers generally add obvious membrane mass transfer resistance, limiting its practical application. In this study, a novel dense JM was facilely developed by controlled interfacial polymerization utilizing a phosphonium functional monomer (THPC) on hydrophilic polyvinylidene fluoride (PVDF) substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!