To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous system) suggesting specific molecular and physiological roles of promiscuous metabolites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569973PMC
http://dx.doi.org/10.3389/fmolb.2015.00051DOI Listing

Publication Analysis

Top Keywords

physicochemical properties
12
drug compounds
12
metabolites
9
binding events
8
binding specificity
8
structural flexibility
8
promiscuous metabolites
8
binding
7
physicochemical
4
physicochemical characteristics
4

Similar Publications

Comprehensive benchmarking of computational tools for predicting toxicokinetic and physicochemical properties of chemicals.

J Cheminform

December 2024

Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Ensuring the safety of chemicals for environmental and human health involves assessing physicochemical (PC) and toxicokinetic (TK) properties, which are crucial for absorption, distribution, metabolism, excretion, and toxicity (ADMET). Computational methods play a vital role in predicting these properties, given the current trends in reducing experimental approaches, especially those that involve animal experimentation. In the present manuscript, twelve software tools implementing Quantitative Structure-Activity Relationship (QSAR) models were selected for the prediction of 17 relevant PC and TK properties.

View Article and Find Full Text PDF

Hazard assessment of nanomaterials: how to meet the requirements for (next generation) risk assessment.

Part Fibre Toxicol

December 2024

Health Effects Laboratory, Department of Environmental Chemistry and Health Effects, NILU, 2007, Kjeller, Norway.

Background: Hazard and risk assessment of nanomaterials (NMs) face challenges due to, among others, the numerous existing nanoforms, discordant data and conflicting results found in the literature, and specific challenges in the application of strategies such as grouping and read-across, emphasizing the need for New Approach Methodologies (NAMs) to support Next Generation Risk Assessment (NGRA). Here these challenges are addressed in a study that couples physico-chemical characterization with in vitro investigations and in silico similarity analyses for nine nanoforms, having different chemical composition, sizes, aggregation states and shapes. For cytotoxicity assessment, three methods (Alamar Blue, Colony Forming Efficiency, and Electric Cell-Substrate Impedance Sensing) are applied in a cross-validation approach to support NAMs implementation into NGRA.

View Article and Find Full Text PDF

Background: Fresh vegetables are commodities that have a high tendency to deteriorate after harvest, causing significant losses in economic and environmental costs associated with plant food loss. Therefore, this study was carried out to evaluate the effects of both un-irradiated (UISA) and irradiated sodium alginate (ISA) as an edible coating for preserving cherry tomato fruits under storage conditions. The FTIR, XRD, TGA, SEM, and TEM were used to characterize the UISA and ISA (25, 50, 75, and 100 kGy), which demonstrated that the alginate polymer was degraded and low molecular-weight polysaccharides were formed as a result of irradiation, particularly with the 100 kGy dose level.

View Article and Find Full Text PDF

Background: Ferritin is a cage-like iron storage protein and can regulate the iron balance of life. It can be developed as a new type of iron supplement, while its function may be influenced by certain food bioactive components. To evaluate the effects of the typical food biomolecules, such as phenolic acid, on the physicochemical property of ferritin are of great importance to clarify the ferritin function in maintaining iron balance.

View Article and Find Full Text PDF

FDA recommends monitoring differential pressure across filter membranes during sterile filtration process validation. However, few resources are available to help pharmaceutical manufacturers anticipate expected differential pressures during sterilizing filtration of different solutions. To address this gap, Meissner evaluated differential pressures across different filtration membranes using various test solutions at increasing pump speeds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!