Horizontal Gene Transfer (HGT) is one of the key mechanisms driving bacterial evolution. Conjugative plasmids are fundamental vehicles for HGT in bacteria, playing an essential role in the spread of antibiotic resistances. Although the classical view has stressed the instrumental role of these mobile genetic elements in the dissemination of antibiotic resistance genes, plasmids contain a rich physiology devoted to horizontal and vertical reproduction. This particular lifestyle imposes specific constrains and trade-offs on plasmid physiology, and plasmids have evolved dedicated circuits to balance the opposing demands of vertical and horizontal reproduction. Recent studies on the transcriptional networks of IncW plasmids and other incompatibility groups have unveiled common architectures in the regulatory networks of different plasmid groups. Comparative studies show that negative feedback loops (NFLs) with strong gains are preferred, opening the question of a possible convergent evolution dictated by certain adaptive properties of this particular network motif. System analysis of NFLs with strong feedback gains indicate that this architecture exhibits transient overshooting after horizontal gene transfer. Since plasmid burden is dependent on the expression of plasmid functions, transcriptional overshooting results in a transient increase of the burden immediately after conjugation. We discuss the possible implications of this phenomenon on plasmid propagation, and the regulatory networks that plasmids have evolved to counteract the detrimental side effects of transient overshooting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4588214 | PMC |
http://dx.doi.org/10.4161/2159256X.2014.988069 | DOI Listing |
China CDC Wkly
January 2025
Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China.
Introduction: Type F () represents a significant pathogen in human gastrointestinal diseases, primarily through its gene encoding enterotoxin (CPE). This investigation examined the prevalence, antimicrobial resistance patterns, and genetic characteristics of Type F within the Chinese population.
Methods: The study analyzed 2,068 stool samples collected from 11 provincial hospitals in 2024.
Genome Biol Evol
January 2025
Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
The human malaria parasite Plasmodium falciparum evolved from a parasite that infects gorillas, termed Plasmodium praefalciparum. The sialic acids on glycans on the surface of erythrocytes differ between humans and other apes. It has recently been shown that the P.
View Article and Find Full Text PDFWaste Manag
January 2025
Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, PR China. Electronic address:
Household waste is a hotspot of antibiotic resistance, which can be readily emitted to the ambient airborne inhalable particulate matters (PM) during the day-long storage in communities. Nevertheless, whether these waste-specific inhalable antibiotic resistance genes (ARGs) are associated with pathogenic bacteria or pose hazards to local residents have yet to be explored. By high-throughput metagenomic sequencing and culture-based antibiotic resistance validation, we analyzed 108 airborne PM and nearby environmental samples collected across different types of residential communities in Shanghai, the most populous city in China.
View Article and Find Full Text PDFExtremophiles
January 2025
Division of Natural Sciences, Indiana Wesleyan University, Marion, Indiana, USA.
Rhodothalassium (Rts.) salexigens is a halophilic purple nonsulfur bacterium and the sole species in the genus Rhodothalassium, which is itself the sole genus in the family Rhodothalassiaceae and sole family in the order Rhodothalassiales (class Alphaproteobacteria). The genome of this phylogenetically unique phototroph comprises 3.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, Sophia Antipolis, France.
Carbohydrate-active enzymes (CAZymes) involved in the degradation of plant cell walls and/or the assimilation of plant carbohydrates for energy uptake are widely distributed in microorganisms. In contrast, they are less frequent in animals, although there are exceptions, including examples of CAZymes acquired by horizontal gene transfer (HGT) from bacteria or fungi in several of phytophagous arthropods and plant-parasitic nematodes. Although the whitefly Bemisia tabaci is a major agricultural pest, knowledge of HGT-acquired CAZymes in this phloem-feeding insect of the Hemiptera order (subfamily Aleyrodinae) is still lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!