All crop species are current or ancient polyploids. Following whole genome duplication, structural and functional modifications result in differential gene content or regulation in the duplicated regions, which can play a fundamental role in the diversification of genes underlying complex traits. We have investigated this issue in Brassica napus, a species with a highly duplicated genome, with the aim of studying the structural and functional organization of duplicated regions involved in quantitative resistance to stem canker, a disease caused by the fungal pathogen Leptosphaeria maculans. Genome-wide association analysis on two oilseed rape panels confirmed that duplicated regions of ancestral blocks E, J, R, U, and W were involved in resistance to stem canker. The structural analysis of the duplicated genomic regions showed a higher gene density on the A genome than on the C genome and a better collinearity between homoeologous regions than paralogous regions, as overall in the whole B. napus genome. The three ancestral sub-genomes were involved in the resistance to stem canker and the fractionation profile of the duplicated regions corresponded to what was expected from results on the B. napus progenitors. About 60% of the genes identified in these duplicated regions were single-copy genes while less than 5% were retained in all the duplicated copies of a given ancestral block. Genes retained in several copies were mainly involved in response to stress, signaling, or transcription regulation. Genes with resistance-associated markers were mainly retained in more than two copies. These results suggested that some genes underlying quantitative resistance to stem canker might be duplicated genes. Genes with a hydrolase activity that were retained in one copy or R-like genes might also account for resistance in some regions. Further analyses need to be conducted to indicate to what extent duplicated genes contribute to the expression of the resistance phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585320PMC
http://dx.doi.org/10.3389/fpls.2015.00772DOI Listing

Publication Analysis

Top Keywords

stem canker
20
duplicated regions
20
resistance stem
16
involved resistance
12
duplicated
11
regions
10
genes
10
analysis duplicated
8
homoeologous regions
8
regions involved
8

Similar Publications

Antifungal Activity of Genistein Against Phytopathogenic Fungi Through ROS-Mediated Lipid Peroxidation.

Plants (Basel)

January 2025

Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), The SATCM's Key Unit of Discovering and Developing New Marine TCM Drugs, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.

() is a necrotrophic fungus responsible for apple Valsa canker, which significantly diminishes apple production yields and quality in China. Our serendipitous findings revealed that genistein significantly inhibits the mycelial growth of , with an inhibition rate reaching 42.36 ± 3.

View Article and Find Full Text PDF

The stem canker disease eastern filbert blight (EFB), caused by , is a major impediment of European hazelnut () production in the United States. While most European hazelnut cultivars are highly susceptible to the pathogen, which remains confined to North America, EFB resistant and tolerant genotypes occur in the gene pool at low frequency. At Rutgers University, New Brunswick, NJ, USA, 5,226 trees were grown from open pollinated seeds collected from Russia, Crimea, Poland, Turkey, Estonia, Latvia, Lithuania, Moldova, Azerbaijan, Italy, and the Republic of Georgia between 2002 to 2010.

View Article and Find Full Text PDF

Diaporthe gulyae and D. helianthi cause Phomopsis stem canker, which is a yield-limiting fungal disease of sunflower (Helianthus annuus L.) in the United States.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on how poplar adventitious roots (ARs) change color due to interaction with fungal canker pathogens, revealing the mechanisms behind pigment production and metabolomic changes.
  • An increase in the synthesis of pigments, especially cyanidin-3-O-glucoside, was observed, along with the discovery that sunlight exposure alters metabolic pathways related to flavonoid synthesis in these roots.
  • Key genes involved in the coloration and biosynthesis were found to be upregulated or downregulated depending on light conditions, indicating a complex response of poplar trees to pathogen infection and environmental factors.
View Article and Find Full Text PDF

First report of causing Phomopsis stem canker on sunflower ( L.) in Minnesota.

Plant Dis

December 2024

USDA-ARS Plains Area, Edward T. Schafer Agricultural Research Center, Sunflower Improvement Research Unit, Fargo, North Dakota, United States;

Cultivated sunflower (Helianthus annuus L.) is a globally important oilseed crop that is grown primarily in the Northern Great Plains region of the United States. In September 2018, sunflower stems exhibiting brown stem lesions centered on the leaf axils and accompanied by pith degradation, consistent with symptoms of Phomopsis stem canker (PSC) disease, were sampled from a commercial field of approximately 520 hectares in Polk County, MN (47°50'24" N, 96.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!