The aim of this study was to evaluate the teratogenic effects of three common Chinese medical prescriptions, Si Jun Zi Tang (SJZT), Liu Jun Zi Tang (LJZT) and Shenling Baizhu San (SLBS), during zebrafish pronephros development. We used the transgenic zebrafish line Tg(wt1b:EGFP) to assess the teratogenic effects using 12 different protocols, which comprised combinations of 4 doses (0, 25, 250, 1,250 ng/mL) and 3 exposure methods [methods I, 12-36 hours post fertilization (hpf), II, 24-48 hpf, and III, 24-36 hpf]. As a result, few defects in the kidneys were observed in the embryos exposed to 25 ng/mL of each medical prescription. The percentage of kidney malformation phenotypes increased as the exposure concentrations increased (25 ng/mL, 0-10%; 250 ng/mL, 0-60%; 1,250 ng/mL, 80-100%). Immunohistochemistry for α6F, which is a basolateral and renal tubular differentiation marker, revealed no obvious defective phenotypes in either SJZT- or LJZT-treated embryos, indicating that these Chinese medical prescriptions had minimal adverse effects on the pronephric duct. However, SLBS-treated embryos displayed a defective phenotype in the pronephric duct. According to these findings, we suggest (1) that the Chinese medical prescriptions induced kidney malformation phenotypes that are dose dependent and (2) that the embryonic zebrafish kidney was more sensitive to SLBS than SJZT and LJZT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4588208 | PMC |
http://dx.doi.org/10.1293/tox.2013-0045 | DOI Listing |
Sci Rep
January 2025
College of Computer and Information Engineering, Nanjing Tech University, Nanjing, Jiangsu, China.
Intelligent transportation systems heavily rely on forecasting urban traffic flow, and a variety of approaches have been developed for this purpose. However, most current methods focus on exploring spatial and temporal dependencies in historical traffic data, while often overlooking the inherent spectral characteristics hidden in traffic time series. In this paper, we introduce an approach to analyzing traffic flow in the frequency domain.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
Drought, a major consequence of climate change, initiates molecular interactions among genes, proteins, and metabolites. a high-quality perennial grass species, exhibits robust drought resistance. However, the molecular mechanism underlying this resistance remaining largely unexplored.
View Article and Find Full Text PDFJ Inflamm Res
December 2024
Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China.
Purpose: This study aimed to examine the impact of APS on acute kidney injury induced by rhabdomyolysis (RIAKI), exploring its association with macrophage M1 polarization and elucidating the underlying mechanisms.
Methods: C57BL/6J mice were randomly assigned to one of three groups: a normal control group, a RIAKI model group, and an APS treatment group. Techniques such as flow cytometry and immunofluorescence were employed to demonstrate that APS can inhibit the transition of renal macrophages to the M1 phenotype in RIAKI.
Transl Stroke Res
December 2024
Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China.
Perihematomal edema (PHE) significantly aggravates secondary brain injury in patients with intracerebral hemorrhage (ICH), yet its detailed mechanisms remain elusive. Neutrophil extracellular traps (NETs) are known to exacerbate neurological deficits and worsen outcomes after stroke. This study explores the potential role of NETs in the pathogenesis of brain edema following ICH.
View Article and Find Full Text PDFAm J Clin Nutr
November 2024
Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China; Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China. Electronic address:
Background: The EAT-Lancet diet was reported to be mutually beneficial for the human cardiometabolic system and planetary health. However, mechanistic evidence linking the EAT-Lancet diet and human cardiometabolic health is lacking.
Objectives: We aimed to investigate the role of blood proteins in the association between the EAT-Lancet diet and cardiometabolic health and explore the underlying gut microbiota-blood protein interplay.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!